matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikJacobi Verfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Numerik" - Jacobi Verfahren
Jacobi Verfahren < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobi Verfahren: Bestimmung der Eigenwerte
Status: (Frage) beantwortet Status 
Datum: 09:21 Fr 12.02.2010
Autor: ul7ima

Aufgabe
Gegeben ist die symmetrische Matrix

A = [mm] \pmat{ -5 & 4 & -3\wurzel{3} \\ 4 & 3 & -2\wurzel{3}\\ -3\wurzel{3} & -2\wurzel{3} & 1} [/mm]

Führen Sie einen Schritt des JACOBI-Verfahrens mit Maximalpivotwahl zur Bestimmmung der Eigenwerte durch und geben Sie die transformierte Matrix an.

Hallo,

ich finde nicht so wirklich einen Anfang. Was ich über das JACOBI-Verfahren gefunden habe war alles aus der Form Ax=b. Muss ich da b=0 setzten?
Ich habe auch nirgendwo mal ein Beispiel gefunden wo das mal Durchgerechnet wurde.... Jemand eine Idee oder Link oder Lösung?

Vielen Dank
Roman

        
Bezug
Jacobi Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:45 Fr 12.02.2010
Autor: felixf

Hallo Roman!

> Gegeben ist die symmetrische Matrix
>  
> A = [mm]\pmat{ -5 & 4 & -3\wurzel{3} \\ 4 & 3 & -2\wurzel{3}\\ -3\wurzel{3} & -2\wurzel{3} & 1}[/mm]
>  
> Führen Sie einen Schritt des JACOBI-Verfahrens mit
> Maximalpivotwahl zur Bestimmmung der Eigenwerte durch und
> geben Sie die transformierte Matrix an.
>  Hallo,
>  
> ich finde nicht so wirklich einen Anfang. Was ich über das
> JACOBI-Verfahren gefunden habe war alles aus der Form Ax=b.
> Muss ich da b=0 setzten?

Kann es sein, dass du an den falschen Stellen gesucht hast, etwa an []dieser Stelle (achte auf der Seite mal auf den hellgrauen Kasten direkt unter dem Titel)? []Hier kommt kein $b$ vor. Und unten findest du auch Links, wo du mehr Informationen finden kannst.

LG Felix


Bezug
                
Bezug
Jacobi Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:17 Fr 12.02.2010
Autor: ul7ima

Ahh ok...das Berühmte "Wer lesen kann ist klar im Vorteil" ;>
Danke für den Hinweis ich probier es mal damit.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]