matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenJacobi Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Jacobi Matrix
Jacobi Matrix < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobi Matrix: Tipp,korrektur
Status: (Frage) beantwortet Status 
Datum: 10:54 Sa 31.10.2015
Autor: LGS

Aufgabe
Bestimmen sie für $ A [mm] \in \IR^{mxn}$ [/mm] und [mm] $b\in \IR^m$ [/mm] die Jacobi-Matrix der Abbildung [mm] $f:\IR^n \to \IR [/mm] , x [mm] \mapsto ||Ax-b||_2^{2}$ [/mm]


Berechnen sie zunächst die Jacobi-Matrizen  der Abbildungen [mm] $g:\IR^m \to \IR [/mm] , x [mm] \mapsto ||x||_2^{2}$ [/mm] und [mm] $h:\IR^n \to \IR^m [/mm] , x [mm] \mapsto [/mm] Ax-b$
und verwenden sie anschließen die Kettenregel

1) Ableitung von  [mm] $g:\IR^m \to \IR [/mm] , x [mm] \mapsto ||x||_2^{2}= $($\sqrt{\summe_{i=1}^{m} x_i^2}$)^2= \summe_{i=1}^{m} x_i^2$ [/mm]


so jetzt  [mm] $\summe_{i=1}^{m} x_i^2= x_1^2+x_2^2+x_3^2+.......+x_m^2$ [/mm]  und wir wollen die Jacobi matrix haben,dazu brauche ich ja erstmal alle partiellen ableitungen.  [mm] $\frac{dg}{dx_i}\summe_{i=1}^{m} x_i^2$ [/mm] . z.bsp ist eine partielle Ableitung [mm] $\frac{dg}{dx_1}\summe_{i=1}^{1} x_i^2= 2x_1 [/mm] $

das heißt  die Jacobimatrix [mm] $J(g)(x_1,...,x_m)=\pmat{ 2x_1& 2x_2&...&2x_m }$ [/mm]


die Ableitungen von [mm] $h:\IR^n \to \IR^m [/mm] , x [mm] \mapsto [/mm] Ax-b$  müsste ja einfach $A$ sein,oder nicht?


$Ax-b = [mm] \pmat{ a_{11} & ....&a_{m1} \\ \\ a_{1n}&...... &a_{mn}}\codt{}\vektor{x_1\\ x_2\\...\\x_n}-\vektor{b_1\\ b_2\\...\\b_m}$, [/mm] da ja alle anderen $x$ wegfallen bzw. das $a$ als koeffizient außer jenes ,welches gerade partielle abgeleitet wird?


also $J(h) = A = [mm] \pmat{ a_{11} & ....&a_{m1} \\ \\ a_{1n}&...... &a_{mn}}$ [/mm]


jetzt kettenregel:

[mm] $(g\circ [/mm] h [mm] )'(x)=g'(h)\codt{}h'(x)$ [/mm]

[mm] g'(h)=\pmat{ 2x_1& 2x_2&...&2x_m}$ [/mm]


und hier hackt es jetzt...:/


bitte hilfe..:/

        
Bezug
Jacobi Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Sa 31.10.2015
Autor: schachuzipus

Hallo LGS,


> Bestimmen sie für [mm]A \in \IR^{mxn}[/mm] und [mm]b\in \IR^m[/mm] die
> Jacobi-Matrix der Abbildung [mm]f:\IR^n \to \IR , x \mapsto ||Ax-b||_2^{2}[/mm]

>
>

> Berechnen sie zunächst die Jacobi-Matrizen der
> Abbildungen [mm]g:\IR^m \to \IR , x \mapsto ||x||_2^{2}[/mm] und
> [mm]h:\IR^n \to \IR^m , x \mapsto Ax-b[/mm]
> und verwenden sie
> anschließen die Kettenregel
> 1) Ableitung von [mm]g:\IR^m \to \IR[/mm] , x [mm][mm] \mapsto ||x||_2^{2}=[/mm]  [mm]([/mm][mm] \sqrt{\summe_{i=1}^{m} x_i^2}[/mm] [mm])^2= \summe_{i=1}^{m} x_i^2[/mm]

>
>

> so jetzt [mm]\summe_{i=1}^{m} x_i^2= x_1^2+x_2^2+x_3^2+.......+x_m^2[/mm]
> und wir wollen die Jacobi matrix haben,dazu brauche ich ja
> erstmal alle partiellen ableitungen.
> [mm]\frac{dg}{dx_i}\summe_{i=1}^{m} x_i^2[/mm] . z.bsp ist eine
> partielle Ableitung [mm]\frac{dg}{dx_1}\summe_{i=1}^{1} x_i^2= 2x_1[/mm]

>

> das heißt die Jacobimatrix [mm]J(g)(x_1,...,x_m)=\pmat{ 2x_1& 2x_2&...&2x_m }[/mm]

>
>

> die Ableitungen von [mm]h:\IR^n \to \IR^m , x \mapsto Ax-b[/mm]
> müsste ja einfach [mm]A[/mm] sein,oder nicht?

>
>

> [mm]Ax-b = \pmat{ a_{11} & ....&a_{m1} \\ \\ a_{1n}&...... &a_{mn}}\codt{}\vektor{x_1\\ x_2\\...\\x_n}-\vektor{b_1\\ b_2\\...\\b_m}[/mm],

Du hast bei A Zeilen und Spalten vertauscht, oder?

Das soll doch eine [mm]m\times n[/mm]-Matrix sein ...

> da ja alle anderen [mm]x[/mm] wegfallen bzw. das [mm]a[/mm] als koeffizient
> außer jenes ,welches gerade partielle abgeleitet wird?

>
>

> also [mm]J(h) = A = \pmat{ a_{11} & ....&a_{m1} \\ \\ a_{1n}&...... &a_{mn}}[/mm]

Auch hier: Zeilen und Spalten vertauscht, oder?

Die Jacobimatrix müsste doch vom Formal [mm]m\times n[/mm] sein ..

>
>

> jetzt kettenregel:

>

> [mm](g\circ h )'(x)=g'(h)\codt{}h'(x)[/mm]

>

> [mm]g'(h)=\pmat{ 2x_1& 2x_2&...&2x_m}[/mm]

>
>

> und hier hackt es jetzt...:/

Oder hakt es gar? ;-)


Kettenregel für die Jacobimatrix:

[mm]J_f(\vec x)=J_{g\circ h}(\vec x) \ = \ J_g(h(\vec x))\cdot{}J_h(\vec x)[/mm]

Und das ergibt doch eine [mm]1\times n[/mm]-Matrix, so wie es sein sollte ...



>
>

> bitte hilfe..:/

Gruß

schachuzipus

Bezug
                
Bezug
Jacobi Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Sa 31.10.2015
Autor: LGS

hallo:)


$ Ax-b = [mm] \pmat{ a_{11} & ....&a_{n1} \\ \\ a_{1m}&...... &a_{nm}}\codt{}\vektor{x_1\\ x_2\\...\\x_n}-\vektor{b_1\\ b_2\\...\\b_m} [/mm] $

aber ich komm einfach nicht aufs ergebenis...:/

Bezug
                        
Bezug
Jacobi Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Sa 31.10.2015
Autor: fred97


> hallo:)
>  
>
> [mm]Ax-b = \pmat{ a_{11} & ....&a_{n1} \\ \\ a_{1m}&...... &a_{nm}}\codt{}\vektor{x_1\\ x_2\\...\\x_n}-\vektor{b_1\\ b_2\\...\\b_m}[/mm]
>  
> aber ich komm einfach nicht aufs ergebenis...:/

Du musst doch nur 2 Matrizen miteinander multiplizieren. Wo hast Du Probleme ?

Fred




Bezug
                                
Bezug
Jacobi Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 So 01.11.2015
Autor: LGS

sind die ableitungen denn richtig?...:/

Bezug
                                        
Bezug
Jacobi Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 So 01.11.2015
Autor: fred97


> sind die ableitungen denn richtig?...:/


Ja

Fred

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]