matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationJacobi / Gauß-Seidel Verfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Interpolation und Approximation" - Jacobi / Gauß-Seidel Verfahren
Jacobi / Gauß-Seidel Verfahren < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobi / Gauß-Seidel Verfahren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:22 So 18.03.2012
Autor: mike1988

Aufgabe
Mit Hilfe der Jacobi-Iteration bestimme man einen Näherunslösung des folgenden Gleichungssystems:

3*x+y=1
x+4y*z=1
y*3*z=1

Als Startvektor verwende man den NUll-Vektor. Man ermittle ebenfalls eine Näherungslösung mit dem Verfahren nach Gauß-Seidel.

Hallo!

Werde morgen über dieses Beispiel geprüft, bzw. aoll ich anhand dieses Beispiels morgen den Unterschied der beiden Verfahren erläutern! Deshalb würde ich um kurze Kontrolle bitten, damit ich mich auch sicher nicht verrechnet habe:

1) Jacobi-Iteration:

[mm] A=\pmat{ 3 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 3 }, b=\pmat{ 1 \\ 1 \\ 1 }, x_{0}=\pmat{ 0 \\ 0 \\ 0 } [/mm]

a) Aufspaltung der Matrix A gemäß A = L+D+R ergibt:

[mm] L=\pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 }, D=\pmat{ 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 }, R=\pmat{ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 } [/mm]

b) Bildung der Jacobi-Iterationsmatrix gemäß [mm] T_{J}=-D^{-1}*(L+R): [/mm]

[mm] T_{J}=\pmat{ 0 & -\bruch{1}{3} & 0 \\ -\bruch{1}{4} & 0 & -\bruch{1}{4} \\ 0 & -\bruch{1}{3} & 0 } [/mm]

c) Berechnung der Näherungslösungen [mm] x_{i} [/mm] gemäß [mm] x_{i+1}=T_{J}*x_{i}+D^{-1}*b [/mm]

Der Ausdruck [mm] (D^{-1}*b) [/mm] bleibt für alle Rechenschritte gleich, es ändert sich jeweils nur der Ausdruck [mm] x_{i}, [/mm] welcher bei jeder neuerlichen Berechnung durch den eben errechneten ersetzt wird.

Als Näherungslösung nach 5 Schritten erhalte ich: [mm] x_{5}=\pmat{ \bruch{65}{216} \\ \bruch{5}{48} \\ \bruch{65}{216}} [/mm]

Bis hierher richtig??

2)Gauß-Seidel-Iteration:

a) Aufspaltung der Matrix A gemäß A = L+D+R ergibt:

[mm] L=\pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 }, D=\pmat{ 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 }, R=\pmat{ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 } [/mm]

b) Bildung der Gauß-Seidel-Iterationsmatrix gemäß [mm] T_{GS}=-(D+L)^{-1}*(R): [/mm]

[mm] T_{GS}=\pmat{ 0 & -\bruch{1}{3} & 0 \\ 0 & \bruch{1}{12} & -\bruch{1}{4} \\ 0 & -\bruch{1}{36} & \bruch{1}{12} } [/mm]

c) Berechnung der Näherungslösungen [mm] x_{i} [/mm] gemäß [mm] x_{i+1}=T_{GS}*x_{i}+(D*L)^{-1}*b [/mm]

Der Ausdruck [mm] (D+L)^{-1*b} [/mm] bleibt für alle Rechenschritte gleich, es ändert sich jeweils nur der Ausdruck [mm] x_{i}, [/mm] welcher bei jeder neuerlichen Berechnung durch den eben errechneten ersetzt wird.

Als Näherungslösung nach 5 Schritten erhalte ich: [mm] x_{5}=\pmat{ \bruch{775}{2592} \\ \bruch{521}{5184} \\ \bruch{4663}{15552}} [/mm]

Wie ich mittels Jacobi errechnet habe, sollten x & z die selben Werte haben! Leider kommt dies bei mir so nicht raus (zumindest nicht mit dem Verfahren lt. Gauß-Seidel)!

Stimmt das oben beschrieben so oder habe cih wo einen groben (DENK)-Fehler??

Besten Dank für eure Unterstützung!!

Lg



        
Bezug
Jacobi / Gauß-Seidel Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 So 18.03.2012
Autor: MathePower

Hallo mike1988,

> Mit Hilfe der Jacobi-Iteration bestimme man einen
> Näherunslösung des folgenden Gleichungssystems:
>  
> 3*x+y=1
>  x+4y*z=1
>  y*3*z=1
>  
> Als Startvektor verwende man den NUll-Vektor. Man ermittle
> ebenfalls eine Näherungslösung mit dem Verfahren nach
> Gauß-Seidel.
>  Hallo!
>  
> Werde morgen über dieses Beispiel geprüft, bzw. aoll ich
> anhand dieses Beispiels morgen den Unterschied der beiden
> Verfahren erläutern! Deshalb würde ich um kurze Kontrolle
> bitten, damit ich mich auch sicher nicht verrechnet habe:
>  
> 1) Jacobi-Iteration:
>  
> [mm]A=\pmat{ 3 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 3 }, b=\pmat{ 1 \\ 1 \\ 1 }, x_{0}=\pmat{ 0 \\ 0 \\ 0 }[/mm]
>  
> a) Aufspaltung der Matrix A gemäß A = L+D+R ergibt:
>  
> [mm]L=\pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 }, D=\pmat{ 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 }, R=\pmat{ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 }[/mm]
>  
> b) Bildung der Jacobi-Iterationsmatrix gemäß
> [mm]T_{J}=-D^{-1}*(L+R):[/mm]
>  
> [mm]T_{J}=\pmat{ 0 & -\bruch{1}{3} & 0 \\ -\bruch{1}{4} & 0 & -\bruch{1}{4} \\ 0 & -\bruch{1}{3} & 0 }[/mm]
>  
> c) Berechnung der Näherungslösungen [mm]x_{i}[/mm] gemäß
> [mm]x_{i+1}=T_{J}*x_{i}+D^{-1}*b[/mm]
>  
> Der Ausdruck [mm](D^{-1}*b)[/mm] bleibt für alle Rechenschritte
> gleich, es ändert sich jeweils nur der Ausdruck [mm]x_{i},[/mm]
> welcher bei jeder neuerlichen Berechnung durch den eben
> errechneten ersetzt wird.
>  
> Als Näherungslösung nach 5 Schritten erhalte ich:
> [mm]x_{5}=\pmat{ \bruch{65}{216} \\ \bruch{5}{48} \\ \bruch{65}{216}}[/mm]
>  
> Bis hierher richtig??
>  


Ja. [ok]


> 2)Gauß-Seidel-Iteration:
>  
> a) Aufspaltung der Matrix A gemäß A = L+D+R ergibt:
>  
> [mm]L=\pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 }, D=\pmat{ 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 }, R=\pmat{ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 }[/mm]
>  
> b) Bildung der Gauß-Seidel-Iterationsmatrix gemäß
> [mm]T_{GS}=-(D+L)^{-1}*(R):[/mm]
>  
> [mm]T_{GS}=\pmat{ 0 & -\bruch{1}{3} & 0 \\ 0 & \bruch{1}{12} & -\bruch{1}{4} \\ 0 & -\bruch{1}{36} & \bruch{1}{12} }[/mm]

>


[ok]

  

> c) Berechnung der Näherungslösungen [mm]x_{i}[/mm] gemäß
> [mm]x_{i+1}=T_{GS}*x_{i}+(D*L)^{-1}*b[/mm]
>  


Hier muss es doch lauten:

[mm]x_{i+1}=T_{GS}*x_{i}+(D\blue{+}L)^{-1}*b[/mm]


> Der Ausdruck [mm](D+L)^{-1*b}[/mm] bleibt für alle Rechenschritte
> gleich, es ändert sich jeweils nur der Ausdruck [mm]x_{i},[/mm]
> welcher bei jeder neuerlichen Berechnung durch den eben
> errechneten ersetzt wird.
>  
> Als Näherungslösung nach 5 Schritten erhalte ich:
> [mm]x_{5}=\pmat{ \bruch{775}{2592} \\ \bruch{521}{5184} \\ \bruch{4663}{15552}}[/mm]
>  


Hier erhalte ich einen anderen Wert.


> Wie ich mittels Jacobi errechnet habe, sollten x & z die
> selben Werte haben! Leider kommt dies bei mir so nicht raus
> (zumindest nicht mit dem Verfahren lt. Gauß-Seidel)!
>  
> Stimmt das oben beschrieben so oder habe cih wo einen
> groben (DENK)-Fehler??
>  
> Besten Dank für eure Unterstützung!!
>  
> Lg
>  


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]