matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenJacobi-/Hesse-Matrix, Gradient
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Jacobi-/Hesse-Matrix, Gradient
Jacobi-/Hesse-Matrix, Gradient < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobi-/Hesse-Matrix, Gradient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:47 Di 01.09.2009
Autor: NightmareVirus

Hallo,
ich versuche gerade Unterschiede&Gemeinsamkeiten zwischen
Jacobimatrix, Hesse-Matrix und Gradient
herauszufinden.

Zunächst haben ja alle etwas mit den partiellen Ableitungen einer Funktion zu tun:
Jacobi-Matrix:

Die Jacobi-Matrix einer differenzierbaren Funktion [mm] f\colon {\mathbb{R}^n} \to {\mathbb{R}^m} \,\! [/mm] ist die m [mm] \times [/mm] n-Matrix sämtlicher erster partieller Ableitungen.

    [mm] $$D_f [/mm] = [mm] \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \ldots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots & \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$ [/mm]

Hesse-Matrix:

Die Hesse-Matrix fasst die partiellen zweiten Ableitungen einer mehrdimensionalen Funktion f(x1,..xn), die in die reellen oder komplexen Zahlen abbildet, zusammen:

    [mm] $$\operatorname{H}(f)=\operatorname{H}_f= \left(\frac{\partial^2f}{\partial x_i\partial x_j}\right)= \begin{pmatrix} \frac{\partial^2 f}{\partial x_1\partial x_1}&\frac{\partial^2 f}{\partial x_1\partial x_2}&\cdots&\frac{\partial^2 f}{\partial x_1\partial x_n}\\[,5em] \frac{\partial^2 f}{\partial x_2\partial x_1}&\frac{\partial^2 f}{\partial x_2\partial x_2}&\cdots&\frac{\partial^2 f}{\partial x_2\partial x_n}\\ \vdots&\vdots&\ddots&\vdots\\ \frac{\partial^2 f}{\partial x_n\partial x_1}&\frac{\partial^2 f}{\partial x_n\partial x_2}&\cdots&\frac{\partial^2 f}{\partial x_n\partial x_n} \end{pmatrix}$$ [/mm]


Gradient:
Sei $f : D [mm] \to \R$ [/mm] in [mm] $\xi \in [/mm] D$ (nach allen [mm] $x_i$) [/mm] partiell diff'bar. Dann heisst der Vektor
$$grad(f) = [mm] \pmat{ \bruch{\partial f}{\partial x_1}(\xi) \\ \vdots \\ \bruch{\partial f}{\partial x_n}(\xi) }$$ [/mm]
Gradient von $f$ in [mm] $x_i$ [/mm]
-------
Dazu jetzt ein paar Fragen:

Bei der Jacobimatrix sind ja explizit Funktionen der Form
$f: [mm] \mathbb R^3 \rightarrow \mathbb R^2$ [/mm] erlaubt. Also z.B.: $f(x,y,z) = [mm] \left ( \begin{array}{c} x^2 + y^2 + z \cdot \sin(x) \\ z^2 + z \cdot \sin(y) \end{array} \right [/mm] )$

Könnte man zu dieser Funktion auch eine Hesse-Matrix bestimmen?
Das Problem ist $f$ besteht ja quasi aus 2 Funktionen. In meiner Hesse-Definition wird aber immer nur eine Funktion partiell abgeleitet(2-fach).

-----

Ist für eine Funktion $f: [mm] \mathbb R^n \rightarrow \mathbb [/mm] R$ die Jacobimatrix gleich dem transponierten Gradienten


        
Bezug
Jacobi-/Hesse-Matrix, Gradient: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Di 01.09.2009
Autor: leduart

Hallo
Die Hessematrix einer vektorwertigen fkt.  [mm] F=(f_1(x1,..xn),f_2,..)gibt [/mm] es nicht. natuerlich kannst du die Hessematrix von [mm] f_1, f_2 [/mm] usw bilden, ich wuesste aber grade kein Bsp. wo die benutzt werden.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]