matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenJacobi-Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Jacobi-Matrix
Jacobi-Matrix < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jacobi-Matrix: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:13 Do 21.06.2007
Autor: CPH

Aufgabe
(Kugelkoordinaten) Berechne die Jacobi-Matrix der Abbildung f : [mm] R^3 \to R^3, [/mm]
(r, [mm] \phi, \theta) \mapsto [/mm] (x, y, z) := (r cos [mm] \phi cos\theta [/mm] , r sin [mm] \phi [/mm] cos [mm] \theta [/mm] , r sin [mm] \theta). [/mm]

Hallo, Gibt es einen einfachen algorithmus eine Jacobi - Matrix zu berechnen?

Es muss ja eine 3x3 matrix sein, vielleicht könnt ihr mir eine Zeile oder Spalte vorrechnen, damit ich einen Eindruck gewinne, wie das überhaupt zu funktionieren hat.

MfG

Christoph

        
Bezug
Jacobi-Matrix: einfach nur partielle Ableitun
Status: (Antwort) fertig Status 
Datum: 00:51 Fr 22.06.2007
Autor: Bastiane

Hallo CPH!

> (Kugelkoordinaten) Berechne die Jacobi-Matrix der Abbildung
> f : [mm]R^3 \to R^3,[/mm]
>  (r, [mm]\phi, \theta) \mapsto[/mm] (x, y, z) := (r
> cos [mm]\phi cos\theta[/mm] , r sin [mm]\phi[/mm] cos [mm]\theta[/mm] , r sin
> [mm]\theta).[/mm]
>  Hallo, Gibt es einen einfachen algorithmus eine Jacobi -
> Matrix zu berechnen?
>  
> Es muss ja eine 3x3 matrix sein, vielleicht könnt ihr mir
> eine Zeile oder Spalte vorrechnen, damit ich einen Eindruck
> gewinne, wie das überhaupt zu funktionieren hat.

Was willst du denn da für einen Algorithmus? Du musst doch einfach nur die partiellen Ableitungen berechnen - siehe auch z. B. []hier. :-) Weißt du, was eine partielle Ableitung ist? Ansonsten lies das mal nach - ist auch nicht schwierig. Und dann die Dinger halt in der richtigen "Reihenfolge" in die Matrix schreiben. :-)

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]