matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenCafé VHIteriertes Querprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Café VH" - Iteriertes Querprodukt
Iteriertes Querprodukt < Café VH < Internes < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Café VH"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Iteriertes Querprodukt: multiplikative Ziffernwurzel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 Fr 14.11.2014
Autor: metasprecher

Hallo liebe Gemeinde,

wenn ich das Querprodukt einer Zahl bilde, erhalte ich eine neue Zahl, aus der ich nun wieder das Querprodukt bilde. Nach einer bestimmten Anzahl von Schritten komme ich auf eine einstellige Zahl.
Die Anzahl der Schritte wird als multiplikative Ziffernwurzel der Zahl bezeichnet. Öfters auch als Beharrlichkeit einer Zahl bezeichnet.
Ich soll nun einen schnellen Algorithmus entwickeln, der die kleinstmögliche Zahl findet, bei der man 11 Schritte benötigt. Das Ergebnis findet sich bei Wikipedia und ist 277777788888899 (iteratives Querprodukt).
Ich habe nun ein Programm geschrieben, welches alle Zahlen, beginnend bei 10 durchgeht und die Ziffernwurzel sucht. Dabei gibt es die Ziffernwurzel aus und die zugehörige kleinstmögliche Zahl.
Hier mal die Ausgabe, damit ihr wisst, um was es geht.

table init: 0.002 sec
1: 10 (0.004 sec)
2: 25 (0.004 sec)
3: 39 (0.004 sec)
4: 77 (0.004 sec)
5: 679 (0.004 sec)
6: 6788 (0.005 sec)
7: 68889 (0.01 sec)
8: 2677889 (0.056 sec)
9: 26888999 (0.435 sec)
10: 3778888999 (49.025 sec)

Ich schreibe die Querprodukte erst mal in eine Tabelle und fange dann an zu testen. Die kleinstmögliche Zahl mit der multiplikativen Ziffernwurzel 10 wird bei mir nach etwa 50 Sekunden gefunden. War schon ziemlich froh darüber, weil die Tabellenlösung gegenüber der Lösung ohne Tabelle etwa 3mal schneller ist.
Die  kleinstmögliche Zahl mit der multiplikativen Ziffernwurzel 11 wird bei mir auch nach einigen Stunden nicht gefunden. Ist halt nicht so schnell, der I7-Prozessor.

Jetzt kommt also meine Frage:
Gibt es eine Methode, diese kleinstmöglichen Zahlen schneller zu finden?
Eine Optimierung habe ich schon eingebaut: Wenn eine Ziffer 0 ist, ist das Ergebnis 0 und ich brauche mit dem Querprodukt nicht mehr weiter zu machen.
Heute hat mir nämlich jemand gesagt, dass die multiplikative Ziffernwurzel 10 sich auf einem handelsüblichen Laptop bereits nach 3 Sekunden finden lässt und ich frage mich wie.

Viele Grüße und danke für die Hilfe



        
Bezug
Iteriertes Querprodukt: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 Fr 14.11.2014
Autor: tobit09

Hallo metasprecher und herzlich [willkommenmr]!


Diesen Artikel hast du nun noch einmal hier gepostet. Dort passt er thematisch auch besser hin.

Daher schlage ich vor, dass mögliche Antworten in dem anderen Thread erfolgen.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Café VH"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]