matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesIteration der PM-Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Iteration der PM-Funktion
Iteration der PM-Funktion < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Iteration der PM-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Mo 26.10.2015
Autor: David90

Aufgabe
Iteration der Prandtl-Meyer-Funktion bei vorgegebenen Winkeln.

Hallo Leute,

ich habe vorgegebene Werte für den Winkel [mm] \nu [/mm] an verschiedenen Orten. Jetzt soll ich die Machzahl M zu jedem Winkel über die Prandtl-Meyer-Funktion iterieren.
Hier mal die Werte für [mm] \nu [/mm] (Gradangaben):
[mm] \nu_1=6,36 [/mm]
[mm] \nu_2=7,63 [/mm]
[mm] \nu_3=8,90 [/mm]
Und hier die PM-Funktion:
[mm] \nu(M)=\wurzel{\bruch{\kappa+1}{\kappa-1}}*arctan(\wurzel{\bruch{\kappa-1}{\kappa}*(M^2-1)})-arctan(\wurzel{M^2-1}) [/mm] mit [mm] \kappa=1,4 [/mm]

So jetzt wüsste ich gerne wie das mit der Iteration funktioniert (nur die Vorgehensweise). Hoffe jemand kann mir helfen.


Danke schon mal im Voraus.

Viele Grüße

        
Bezug
Iteration der PM-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Di 27.10.2015
Autor: MathePower

Hallo David90,

> Iteration der Prandtl-Meyer-Funktion bei vorgegebenen
> Winkeln.
>  Hallo Leute,
>  
> ich habe vorgegebene Werte für den Winkel [mm]\nu[/mm] an
> verschiedenen Orten. Jetzt soll ich die Machzahl M zu jedem
> Winkel über die Prandtl-Meyer-Funktion iterieren.
>  Hier mal die Werte für [mm]\nu[/mm] (Gradangaben):
>  [mm]\nu_1=6,36[/mm]
>  [mm]\nu_2=7,63[/mm]
>  [mm]\nu_3=8,90[/mm]
>  Und hier die PM-Funktion:
>  
> [mm]\nu(M)=\wurzel{\bruch{\kappa+1}{\kappa-1}}*arctan(\wurzel{\bruch{\kappa-1}{\kappa}*(M^2-1)})-arctan(\wurzel{M^2-1})[/mm]
> mit [mm]\kappa=1,4[/mm]
>  
> So jetzt wüsste ich gerne wie das mit der Iteration
> funktioniert (nur die Vorgehensweise). Hoffe jemand kann
> mir helfen.
>  


Zunächst sind die Winkel [mm]\nu_{i}, \ i=1.2.3[/mm] ins Bogenmaß umzurechenen.

Dann setzt Du

[mm]\nu_{i}=\nu\left(M\right)=\wurzel{\bruch{\kappa+1}{\kappa-1}}*arctan(\wurzel{\bruch{\kappa-1}{\kappa}*(M^2-1)})-arctan(\wurzel{M^2-1})[/mm]

Jetzt wird nach der zweiten arctan-Funktion aufgelöst. Das wird gemacht,
um eine mögliche Iterationsfunktion zu erhalten, wobei innerhalb dieser
Funktion noch nach M aufzulösen ist.


Das sieht dann für das gewählte [mm]\kappa[/mm] so aus:

[mm]M=\[\sqrt{{\mathrm{tan}\left( 2.449489742783178\,\mathrm{atan}\left( 0.45175395145263\,\sqrt{{M}^{2}-1}\right) -\nu_g\right) }^{2}+1}\][/mm]

,wobei [mm]\nu_g[/mm] der umgerechnete Winkel im Bogenmaß ist.

Dann wird der Startwert so gewählt, daß der Betrag der Ableitung der so
erhaltenen Iterationsfunkion kleiner als 1 ist.

Ist dies nicht möglich, so ist nach der ersten arctan-Funktion aufzulösen:

Das sieht dann so aus:

[mm]M=\[\sqrt{4.900000000000002\,{\mathrm{tan}\left( 0.40824829046386\,\mathrm{atan}\left( \sqrt{{M}^{2}-1}\right) +0.40824829046386\,\nu_g\right) }^{2}+1}[/mm]


>
> Danke schon mal im Voraus.
>  
> Viele Grüße


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]