matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieIst f eine Identifizierung?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - Ist f eine Identifizierung?
Ist f eine Identifizierung? < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ist f eine Identifizierung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Do 01.05.2014
Autor: latopo

Aufgabe
Sei [mm] f:D^{n\circ}\times[0,1]\to \IR^{n+1} [/mm] (gemeint ist das Innere von [mm] D^{n}), [/mm]
[mm] (x,t)\mapsto((1-t)x,t) [/mm]
Beschreiben sie das Bild Y der Funktion. Induziert f eine Identifizierung [mm] D^{n\circ}\times[0,1]\toY [/mm] eine Identifizierung, wenn Y als Teilraum des [mm] \IR^{n+1} [/mm] aufgefasst wird?

Das Bild ist ein Kegel: für jese Element aus [0,1] hat man jeweils [mm] D^{n} [/mm] wobei der Radius mit steigendem t zusammengestaucht wird, bis es bei t=1 nur noch ein Punkt ist. Es sieht so aus, als ob offene Mengen immer auf offene abgebildet werden, aber da muss doch irgendwo ein Haken sein. Surjektiv ist die Funktion sowieso.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ist f eine Identifizierung?: Antwort
Status: (Antwort) fertig Status 
Datum: 07:55 Fr 02.05.2014
Autor: fred97


> Sei [mm]f:D^{n\circ}\times[0,1]\to \IR^{n+1}[/mm] (gemeint ist das
> Innere von [mm]D^{n}),[/mm]
>  [mm](x,t)\mapsto((1-t)x,t)[/mm]

Was ist [mm] D^n [/mm] ??? Ich vermute: [mm] D^n=\{x \in \IR^n: ||x||_2 \le 1 \} [/mm]



>  Beschreiben sie das Bild Y der Funktion. Induziert f eine
> Identifizierung [mm]D^{n\circ}\times[0,1]\toY[/mm] eine
> Identifizierung,

Was ist los ? Gibt doch bitte die Aufgabenstellung originalgetreu wieder



> wenn Y als Teilraum des [mm]\IR^{n+1}[/mm]
> aufgefasst wird?


>  Das Bild ist ein Kegel: für jese Element aus [0,1] hat
> man jeweils [mm]D^{n}[/mm] wobei der Radius mit steigendem t
> zusammengestaucht wird, bis es bei t=1 nur noch ein Punkt
> ist.

Wenn meine Vermutung über [mm] D^n [/mm] stimmt, haut das hin.



>  Es sieht so aus, als ob offene Mengen immer auf offene
> abgebildet werden,

In welchem Sinne meinst Du das ?




> aber da muss doch irgendwo ein Haken
> sein. Surjektiv ist die Funktion sowieso.

f ist nicht surjektiv !

Ist [mm] D^n [/mm] so, wie ich vermute, so ist [mm] ||f(x,t)||_2 \le \wurzel{2}. [/mm] f ist also beschränkt, kann somit nicht surjektiv sein !

FRED

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]