matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenIst die Matrix invertierbar?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Ist die Matrix invertierbar?
Ist die Matrix invertierbar? < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ist die Matrix invertierbar?: Aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 21:34 Fr 07.12.2012
Autor: mathemagnus

Aufgabe
Ist die Matrix A [mm] \in [/mm] R^(n x n ) invertierbar?

[mm] \begin{bmatrix} 1 & \cdots & n \\ n+1 & \dots & 2n \\ \vdots & & \vdots \\ n^2-n+1 & \cdots & n² \end{bmatrix} [/mm]

Hallo, ich habe ein Problem bei dieser Aufgabe.
Undzwar wie man eine inverse berechnet ist mir klar, aber wie berechne ich so eine inverse wo auch n mit drinnen ist?
Kann mir jmd. Hinweise geben oder erste Ansätze?

Euer mathemagnus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ist die Matrix invertierbar?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Fr 07.12.2012
Autor: angela.h.b.


> Ist die Matrix A [mm]\in[/mm] R^(n x n ) invertierbar?
>
> [mm]\begin{bmatrix} 1 & \cdots & n \\ n+1 & \dots & 2n \\ \vdots & & \vdots \\ n^2-n+1 & \cdots & n² \end{bmatrix}[/mm]


Hallo,

ich kapiere nicht, wie die Matrix gemacht ist, nach welchem Muster sie aufgebaut wird.

LG Angela


Bezug
                
Bezug
Ist die Matrix invertierbar?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:46 Fr 07.12.2012
Autor: MathePower

Hallo angela,

>
> > Ist die Matrix A [mm]\in[/mm] R^(n x n ) invertierbar?
> >
> > [mm]\begin{bmatrix} 1 & \cdots & n \\ n+1 & \dots & 2n \\ \vdots & & \vdots \\ n^2-n+1 & \cdots & n² \end{bmatrix}[/mm]
>  
>
> Hallo,
>  
> ich kapiere nicht, wie die Matrix gemacht ist, nach welchem
> Muster sie aufgebaut wird.
>  

Die Einträge der Matrix ergeben sich gemäß der Formel

[mm]a_{ij}=\left(i-1\right)*n+j, \ 1 \le i \le n, 1 \le j \le n[/mm]


> LG Angela
>  


Gruss
MathePower

Bezug
        
Bezug
Ist die Matrix invertierbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Fr 07.12.2012
Autor: MathePower

Hallo mathemagnus,

> Ist die Matrix A [mm]\in[/mm] R^(n x n ) invertierbar?
>
> [mm]\begin{bmatrix} 1 & \cdots & n \\ n+1 & \dots & 2n \\ \vdots & & \vdots \\ n^2-n+1 & \cdots & n² \end{bmatrix}[/mm]
>  
> Hallo, ich habe ein Problem bei dieser Aufgabe.
>  Undzwar wie man eine inverse berechnet ist mir klar, aber
> wie berechne ich so eine inverse wo auch n mit drinnen
> ist?
>  Kann mir jmd. Hinweise geben oder erste Ansätze?
>  


Versuche durch Zeilenumformungen die Determinante zu bestimmen.


> Euer mathemagnus
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Ist die Matrix invertierbar?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 Mo 10.12.2012
Autor: mathemagnus

Hallo, die Determinante kann ich bestimmen aber ich verstehe das nicht in  der allgemeinen schreibweise. wie mache ich das?

Bezug
                        
Bezug
Ist die Matrix invertierbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Mo 10.12.2012
Autor: schachuzipus

Hallo mathemagnus,


> Hallo, die Determinante kann ich bestimmen aber ich
> verstehe das nicht in  der allgemeinen schreibweise. wie
> mache ich das?

Hast du mal die Determinante für [mm]n=1,2,3,4[/mm] ausgerechnet?

Ich habe das mal für [mm]n=3[/mm] gemacht. (modulo Rechenfehler)

An der [mm]3\times 3[/mm]-Matrix kann man auch heuristich eine Strategie "ableiten" oder überlegen, um für allg. [mm]n[/mm] entsprechende Zeilenumformungen zu machen, um die Determinante zu berechnen.

Wenn ich das auf die Schnelle richtig überblicke, kann man das [mm]-((k-1)\cdot{}n+1)[/mm]-fache von Zeile 1 auf Zeile [mm]k[/mm] addieren, [mm]k=2,3,4,...[/mm]

Dann "sieht" man schon was ...


Allerdings scheint mir der Fall [mm]n=3[/mm] die Frage schon zu beantworten ...

Gruß

schachuzipus


Bezug
        
Bezug
Ist die Matrix invertierbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Mo 10.12.2012
Autor: rabilein1


>  Und zwar wie man eine inverse berechnet ist mir klar, aber
> wie berechne ich so eine inverse wo auch n mit drinnen ist?
>  Kann mir jmd. Hinweise geben oder erste Ansätze?

Vielleicht hilft es dir ja weiter, wenn du für n eine konkrete Zahl einsetzt (zum Beispiel 3 oder 4). Dann hast du eine konkrete Matrix, für die du die Inverse berechnen kannst.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]