matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIsomorphismus zwischen Gruppen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Isomorphismus zwischen Gruppen
Isomorphismus zwischen Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphismus zwischen Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Mi 04.11.2009
Autor: Zottelchen

Aufgabe
Gesucht sind alle Isomorphismen zwischen den Gruppen [mm] (\IZ_{4},+_{4}) [/mm] und [mm] (\IZ\backslash{0}_{5},*_{5}) [/mm]

Hallo...
Ich sitze gerade am Lernen fürs Mathe-Examen und komme mit den Isomorphismen überhaupt nicht klar. Ich habe leider keinen Ansatz, wie ich diese Aufgabe lösen könnte, da mir auch noch nicht wirklich klar ist, was Isomorphsmen eigentlich sind. Okay, ich weiß, es sind strukturerhaltende, bijektive Abbildungen von der einen Menge in die andere, aber wie finde ich solche?

Wäre super, wenn ihr mir helfen könntet!

Liebe Grüße!
Katrin

        
Bezug
Isomorphismus zwischen Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Mi 04.11.2009
Autor: angela.h.b.


> Gesucht sind alle Isomorphismen zwischen den Gruppen
> [mm](\IZ_{4},+_{4})[/mm] und [mm](\IZ\backslash{0}_{5},*_{5})[/mm]
>  Hallo...
>  Ich sitze gerade am Lernen fürs Mathe-Examen und komme
> mit den Isomorphismen überhaupt nicht klar. Ich habe
> leider keinen Ansatz, wie ich diese Aufgabe lösen könnte,
> da mir auch noch nicht wirklich klar ist, was Isomorphsmen
> eigentlich sind. Okay, ich weiß, es sind
> strukturerhaltende, bijektive Abbildungen von der einen
> Menge in die andere, aber wie finde ich solche?
>  
> Wäre super, wenn ihr mir helfen könntet!

Hallo,

ich gehe davon aus, daß Dir die Bedingungen für "Gruppenhomomorphismus" geläufig sind.

Immer gilt: das neutrale Element muß aufs neutrale abgebildet werden.

Hier hast Du zwei zyklische Gruppen der Ordnung 4.
Da man fürs Abbilden des neutralen Elementes keine Auswahl hat, bleiben noch drei Elemente.

Wenn Du jetzt berücksichtigst, daß erzeugende Elemente stets auf erzeugende abgebildet werden müssen,
merkst Du, daß sich die Anzahl der Möglichkeiten sehr reduziert.
Worauf kannst Du die 1 abbilden?

Was ergibt sich daraus.

Gruß v. Angela







Bezug
                
Bezug
Isomorphismus zwischen Gruppen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:29 Mi 04.11.2009
Autor: Zottelchen

Danke für deine Hilfe! Das neutrale Element in [mm] (\IZ_{4},+_{4}) [/mm] ist ja 0, in [mm] (\IZ*_{5},*_{4}) [/mm] ist das neutrale Element 1. Also gilt: f(0) = 1?
Das erzeugende Element ist in [mm] (\IZ_{4},+_{4}) [/mm] die 1, in [mm] (\IZ*_{5},*_{4}) [/mm] die 2. Also gilt: f(1) = 2?
Bleiben mir für die 2 und 3 noch folgende Möglichkeiten:
f(2) = 3
f(3) = 4

oder

f(2) = 4
f(3) = 3

Ist das jetzt die Lösung? Also gibt es zwei Isomorphismen? Muss man die Bedingung [mm] f(g\*h) [/mm] = f (g) ° f(h) noch für alle Elemente und alle möglichen Kombinationen überprüfen?

Wäre super, wenn du meine Lösung nochmal anschauen könntet!
Dankeschön!

Bezug
                        
Bezug
Isomorphismus zwischen Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Mi 04.11.2009
Autor: Arcesius

Hallo


>  Bleiben mir für die 2 und 3 noch folgende
> Möglichkeiten:
>  f(2) = 3
>  f(3) = 4
>  
> oder
>
> f(2) = 4
>  f(3) = 3
>  
> Ist das jetzt die Lösung? Also gibt es zwei Isomorphismen?
> Muss man die Bedingung [mm]f(g\*h)[/mm] = f (g) ° f(h) noch für
> alle Elemente und alle möglichen Kombinationen
> überprüfen?

Es reicht wenn du zeigst, dass ein Element und sein Bild jeweils die selbe Ordnung haben, sonst kann es kein Isomorphismus sein :)
Also einfach noch das überprüfen und dazu schreiben!

>  
> Wäre super, wenn du meine Lösung nochmal anschauen
> könntet!
>  Dankeschön!

Grüsse, Amaro

Bezug
                                
Bezug
Isomorphismus zwischen Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Mi 04.11.2009
Autor: Zottelchen

da stehe ich gerade völlig auf dem Schlauch... Ist die Ordnung einer Gruppe nicht die Anzahl der Elemente? dann hat ein einzelnes Element doch die Ordnung 1?
Ich glaube, ich habe da etwas missverstanden....

Bezug
                                        
Bezug
Isomorphismus zwischen Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Mi 04.11.2009
Autor: Arcesius

Hallo

> da stehe ich gerade völlig auf dem Schlauch... Ist die
> Ordnung einer Gruppe nicht die Anzahl der Elemente? dann
> hat ein einzelnes Element doch die Ordnung 1?
> Ich glaube, ich habe da etwas missverstanden....

Allerdings :)

Das einzige Element von Ordnung 1 ist das neutrale Element. Die Ordnung eines Elements ist die Ordnung der von ihm aufgespannten Untergruppe, also gesucht ist:

Das kleinste s [mm] \in \IN, [/mm] so dass [mm] g^{s} [/mm] = e für ein g [mm] \in [/mm] G (G Gruppe)


Aber Felix hat recht. Die Gleichheit der Ordnung ist ein notwendiges Kriterium, jedoch reicht es noch nicht ganz, nur das zu zeigen. Gezeicht werden muss es aber trotzdem :)

Grüsse, Amaro



Bezug
                                
Bezug
Isomorphismus zwischen Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:46 Mi 04.11.2009
Autor: felixf

Hallo zusammen!

> > Ist das jetzt die Lösung? Also gibt es zwei Isomorphismen?
> > Muss man die Bedingung [mm]f(g\*h)[/mm] = f (g) ° f(h) noch für
> > alle Elemente und alle möglichen Kombinationen
> > überprüfen?
>  
> Es reicht wenn du zeigst, dass ein Element und sein Bild
> jeweils die selbe Ordnung haben, sonst kann es kein
> Isomorphismus sein :)

Moment: wenn die Ordnungen nicht uebereinstimmen, kann es kein Isomorphismus sein. Aber nur weil die Ordnungen uebereinstimmen muss es noch lange nicht einer sein! Dann gibt es noch mehr zu ueberpruefen.

Da es sich hier um zyklische Gruppen handelt reicht es allerdings weniger zu testen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]