matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenIsomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Isomorphismus
Isomorphismus < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 Sa 06.12.2008
Autor: winni87

Aufgabe
Es sei V ein K-Vektorraum der Dimension n mit Basis {vi} i=1,...,n   W ein K-Vektorraum mit Basis {wi} i=1,...,n. Die lineare Abbildung f: V -> W bilde die Elemente der Basis V surjektiv auf die Basis von W ab. Zeigen Sie, dass f ein Isomorphismus ist.  

Hallo.

Ein Isomorphismus ist ja dann gegeben, wenn f bijektiv ist. Also surjektiv und injektiv. Da in der Aufgabe schon steht, dass das die Surjektivität gegeben ist, würde ich sagen, müsste man nurnoch die Injektivität zeigen, aber wie macht man sowas?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Isomorphismus: Idee
Status: (Antwort) fertig Status 
Datum: 19:39 Sa 06.12.2008
Autor: Vergil

Hallo,

Kurz etwas zur Notation. Mit [mm] f^{-}x[/mm] bezeichne ich die Urbildmenge von x.

[mm] A := \left\{ v_1, v_2 , \dots , v_n \right\} [/mm] und [mm] B := \left\{ b_1, b_2 , \dots , a_n \right\} [/mm] und [mm] f: A \rightarrow B [/mm] und [mm] f (v_i) = w_i [/mm]. Zunächst stellen wir fest [mm] \left| A \right| = \left| B \right| [/mm]. Zunächst ist [mm] B = \cup_{i} f^{-} w_i [/mm] und für [mm] b_j \not= b_k [/mm] gilt [mm] f^{-1} b_j \cap f^{-1} b_k = \emptyset [/mm]. Warum? Außerdem gilt [mm] |f^{-1} a_j| \geq 1 [/mm] Warum?.  Damit erhalten wir

[mm] |A| \summe_{i} |f^{-} a_i| \leq \summe_{i} 1 = |B| = |A| [/mm].
Das heißt aber [mm] |f^{-}a_i| = ?? [/mm] und damit ist f injektiv.

Das hat übrigens nichts mit Vektorräumen oder dergleichen zu tun. Wenn du eine surjektive Abbildung zwischen zwei gleichmächtigen endichen Mengen hast, ist diese automatisch injektiv und umgekehrt.  



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]