matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraIsomorphietypen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Isomorphietypen
Isomorphietypen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphietypen: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:09 Sa 18.09.2010
Autor: schneckennudel91

Aufgabe
Erstellen Sie eine Liste aller Isomorphietypen von abelschen Gruppen der Ordnung 360.
Geben Sie für jede dieser abelschen Gruppen jeweils die Potenzen [mm] e_{l}^{(i)} [/mm] (zu jeder Primzahl mit nichttrivialer Primärkomponente) sowie die Elementarteiler [mm] q_{n}|...|q_{1} [/mm] an.

Vielleicht kann mir hier jemand helfen obige Aufgabe zu lösen. Momentan hänge ich an dem Begriff Isomorphietypen, was ist damit gemeint?
Außerdem verstehe ich das mit der "Ordnung" noch nicht so genau. Bei mir heißt es: "Ein Erzeuger von [mm] ann_{R}(M) [/mm] wird Ordnung von M genannt".
Aber was bedeutet jetzt, dass eine abelsche Gruppe die Ordnung 360 hat? Der Annulator wird von 360 erzeugt?

Vielen Dank schonmal für eure Mühe!


        
Bezug
Isomorphietypen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:26 Mo 20.09.2010
Autor: felixf

Moin!

> Erstellen Sie eine Liste aller Isomorphietypen von
> abelschen Gruppen der Ordnung 360.
>  Geben Sie für jede dieser abelschen Gruppen jeweils die
> Potenzen [mm]e_{l}^{(i)}[/mm] (zu jeder Primzahl mit nichttrivialer
> Primärkomponente) sowie die Elementarteiler
> [mm]q_{n}|...|q_{1}[/mm] an.
>
>  Vielleicht kann mir hier jemand helfen obige Aufgabe zu
> lösen. Momentan hänge ich an dem Begriff Isomorphietypen,
> was ist damit gemeint?
>  Außerdem verstehe ich das mit der "Ordnung" noch nicht so
> genau. Bei mir heißt es: "Ein Erzeuger von [mm]ann_{R}(M)[/mm] wird
> Ordnung von M genannt".
> Aber was bedeutet jetzt, dass eine abelsche Gruppe die
> Ordnung 360 hat? Der Annulator wird von 360 erzeugt?

Du guckst an der falschen Stelle im Skript. Die Ordnung einer endlichen Gruppe ist einfach die Anzahl ihrer Elemente. Nicht mehr und nicht weniger.

LG Felix


Bezug
                
Bezug
Isomorphietypen: erster Schritt
Status: (Frage) beantwortet Status 
Datum: 11:37 Fr 01.10.2010
Autor: schneckennudel91

Ok, ich hab das jetzt glaub ich etwas mehr verstanden...
Ich bekomme 6 Isomorphieklassen raus:
a) [mm] Z_{2} [/mm] x [mm] Z_{2} [/mm] x [mm] Z_{2} [/mm] x [mm] Z_{3} [/mm] x [mm] Z_{3} [/mm] x [mm] Z_{5} [/mm]
b) [mm] Z_{2} [/mm] x [mm] Z_{2} [/mm] x [mm] Z_{2} [/mm] x [mm] Z_{9} [/mm] x [mm] Z_{5} [/mm]
c) [mm] Z_{4} [/mm] x [mm] Z_{2} [/mm] x [mm] Z_{3} [/mm] x [mm] Z_{3} [/mm] x [mm] Z_{5} [/mm]
... und so weiter. Stimmt das soweit? Das mit den Elementarteilern muss ich gleich mal probieren, das bekomme ich hoffentlich hin.

Bezug
                        
Bezug
Isomorphietypen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Fr 01.10.2010
Autor: felixf

Moin!

> Ok, ich hab das jetzt glaub ich etwas mehr verstanden...
>  Ich bekomme 6 Isomorphieklassen raus:
>  a) [mm]Z_{2}[/mm] x [mm]Z_{2}[/mm] x [mm]Z_{2}[/mm] x [mm]Z_{3}[/mm] x [mm]Z_{3}[/mm] x [mm]Z_{5}[/mm]
>  b) [mm]Z_{2}[/mm] x [mm]Z_{2}[/mm] x [mm]Z_{2}[/mm] x [mm]Z_{9}[/mm] x [mm]Z_{5}[/mm]
>  c) [mm]Z_{4}[/mm] x [mm]Z_{2}[/mm] x [mm]Z_{3}[/mm] x [mm]Z_{3}[/mm] x [mm]Z_{5}[/mm]
>  ... und so weiter. Stimmt das soweit? Das mit den
> Elementarteilern muss ich gleich mal probieren, das bekomme
> ich hoffentlich hin.

Sieht soweit gut aus.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]