matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIsomorphie, Polynome
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Isomorphie, Polynome
Isomorphie, Polynome < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphie, Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Mi 09.12.2009
Autor: kunzmaniac

Aufgabe
Sei $K$ Körper und $f1,..,fr [mm] \in [/mm] K[X1,..,Xn]$, sei weiter $R = [mm] \bruch{K[X1,..,Xn]}{(f1,..,fr)}$ [/mm] und $specM(R)$ das maximale Spektrum von $R$.
Zeigen Sie:
[mm] $\{x \in K^n |f1(x)=..=fr(x)=0\}\cong \{m \in specM(R) | R/m \cong K \}$ [/mm]
durch [mm] $\phi(x1,..,xn) [/mm] = (X1-x1,..,Xn-xn)$

Hallo,

ich glaube es es ist mir gelungen, die Wohldefiniertheit der Abbildung [mm] $\phi$ [/mm] zu zeigen.
Es genügt zu zeigen, dass:
$R/(X1-x1,..,Xn-xn) [mm] \cong [/mm] K$, da dann $(X1-x1,..,Xn-xn)$ auch maximal.

betrachte dazu:
[mm] $\psi: [/mm] K [mm] \rightarrow [/mm] R/(X1-x1,..,Xn-xn)$ durch [mm] $\psi(c)=c$. [/mm]

Injektivität klar, Surjektivität erhält man, da alle [mm] $\f \in [/mm] R/(X1-x1,..,Xn-xn)$ konstant sind, da ja im Quotienten gerade gilt $X1=x1, .., Xn=xn$ was ja dem Einsetzen entspricht.

Wie aber zeige ich jetzt dass auch [mm] $\phi$ [/mm] surjektiv und injektiv ist?

        
Bezug
Isomorphie, Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Do 10.12.2009
Autor: felixf

Hallo!

> Sei [mm]K[/mm] Körper und [mm]f1,..,fr \in K[X1,..,Xn][/mm], sei weiter [mm]R = \bruch{K[X1,..,Xn]}{(f1,..,fr)}[/mm]
> und [mm]specM(R)[/mm] das maximale Spektrum von [mm]R[/mm].
> Zeigen Sie:
>  [mm]\{x \in K^n |f1(x)=..=fr(x)=0\}\cong \{m \in specM(R) | R/m \cong K \}[/mm]
>  
> durch [mm]\phi(x1,..,xn) = (X1-x1,..,Xn-xn)[/mm]
>  Hallo,
>  
> ich glaube es es ist mir gelungen, die Wohldefiniertheit
> der Abbildung [mm]\phi[/mm] zu zeigen.
>  Es genügt zu zeigen, dass:
>  [mm]R/(X1-x1,..,Xn-xn) \cong K[/mm], da dann [mm](X1-x1,..,Xn-xn)[/mm] auch
> maximal.
>
> betrachte dazu:
>  [mm]\psi: K \rightarrow R/(X1-x1,..,Xn-xn)[/mm] durch [mm]\psi(c)=c[/mm].
>  
> Injektivität klar, Surjektivität erhält man, da alle [mm]\f \in R/(X1-x1,..,Xn-xn)[/mm]
> konstant sind, da ja im Quotienten gerade gilt [mm]X1=x1, .., Xn=xn[/mm]
> was ja dem Einsetzen entspricht.

Ja, das geht so. Alternativ schau dir [mm] $K[X_1, \dots, X_n] \to [/mm] K$, $f [mm] \mapsto f(x_1, \dots, x_n)$ [/mm] an. Der Kern ist [mm] $(X_1 [/mm] - [mm] x_1, \dots, X_n [/mm] - [mm] x_n)$ [/mm] und die Abbildung ist eindeutig surjektiv.

> Wie aber zeige ich jetzt dass auch [mm]\phi[/mm] surjektiv und
> injektiv ist?

Fuer die Injektivitaet: nimm dir zwei Tupel [mm] $(x_1, \dots, x_n), (y_1, \dots, y_n)$. [/mm] Angenommen es gibt ein $i$ mit [mm] $x_i \neq y_i$. [/mm] Ist dann [mm] $Y_i [/mm] - [mm] y_i$ [/mm] in [mm] $(X_1 [/mm] - [mm] x_1, \dots, X_n [/mm] - [mm] x_n)$ [/mm] enthalten?

Fuer die Surjektivitaet: sei $m [mm] \in [/mm] specM(R)$. Betrachte $K [mm] \to K[X_1, \dots, X_n] \to [/mm] R [mm] \to [/mm] R/m$; dies ist offenbar ein Isomorphismus. Betrachte nun die Restklassen von [mm] $X_1, \dots, X_n$ [/mm] in $R/m$ und nenne sie [mm] $\hat{a}_1, \dots, \hat{a}_n$; [/mm] weiterhin waehle [mm] $a_i \in [/mm] K$, welche ueber den grade genannten Isomorphismus $K [mm] \cong [/mm] R/m$ auf [mm] $\hat{a}_i$ [/mm] abgebildet werden. Zeige, dass $m = [mm] (X_1 [/mm] - [mm] a_1, \dots, X_n [/mm] - [mm] a_n)$ [/mm] ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]