matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieIsomorphie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Isomorphie
Isomorphie < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isomorphie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 So 17.11.2013
Autor: HannSG

Aufgabe
Begründen Sie: Die Isomorphie ist - auf jeder Menge von Pfeilmodellen - eine
Äquivalenzrelation.


Also hier muss ich ja die Reflexivität, Symmetrie und Transitivität beweisen, oder?

Isomorphismus haben wir so definiert:

Seien (G, 0, N), ( G , 0 , N ) Pfeilmodelle. Eine bijektive Abbildung [mm] \delta: [/mm] G [mm] \to [/mm] G mit den Eigenschaften
(1) [mm] \delta(0) [/mm] = 0
(2) [mm] \delta [/mm] (N(a)) = N [mm] (\delta(a)) [/mm]
heißen Isomorphismus von (G, 0, N) nach ( G , 0 , N ).

Muss ich jetzt mit den 2 Eigenschaften arbeiten? Und wie setze ich da am besten an?

Schon einmal danke im Voraus.
Lg Hanna

        
Bezug
Isomorphie: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Mo 18.11.2013
Autor: hippias


> Begründen Sie: Die Isomorphie ist - auf jeder Menge von
> Pfeilmodellen - eine
>  Äquivalenzrelation.
>  
> Also hier muss ich ja die Reflexivität, Symmetrie und
> Transitivität beweisen, oder?

Ja.

>  
> Isomorphismus haben wir so definiert:
>  
> Seien (G, 0, N), ( G , 0 , N ) Pfeilmodelle. Eine bijektive
> Abbildung [mm]\delta:[/mm] G [mm]\to[/mm] G mit den Eigenschaften
>  (1) [mm]\delta(0)[/mm] = 0
>  (2) [mm]\delta[/mm] (N(a)) = N [mm](\delta(a))[/mm]
>  heißen Isomorphismus von (G, 0, N) nach ( G , 0 , N ).
>  
> Muss ich jetzt mit den 2 Eigenschaften arbeiten?

Ja.

> Und wie
> setze ich da am besten an?

Ich verstehe die Frage nicht. Fange vielleicht mit der Reflexivitaet an: Ist jedes Pfeilmodell zu sich selbst isomorph? Wie lautet ein Isomorphismus?

>  
> Schon einmal danke im Voraus.
>  Lg Hanna


Bezug
                
Bezug
Isomorphie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Mo 18.11.2013
Autor: HannSG

Danke schon mal.

>  Ich verstehe die Frage nicht. Fange vielleicht mit der
> Reflexivitaet an: Ist jedes Pfeilmodell zu sich selbst
> isomorph? Wie lautet ein Isomorphismus?

Ja das ist ja eigentlich logisch. Zeige ich das dann an den Eigenschaften? Also, dass folgendes gilt:


(1) [mm]\delta(0)[/mm] = 0
(2) [mm]\delta[/mm] (N(a)) = N [mm](\delta(a))[/mm]

Muss ich das jetzt noch beweisen? Das ist doch eigentlich selbsterklärend.


Muss ich bei der Symmetrie dann beweisen, dass ein Pfeilmodell G zu einem anderen Pfeilmodell G isomorph ist, wenn G isomorph zu G ist?



Und Transitivität würde dann bedeuten:

G ist isomorph zu G und G ist isomorph zu G' [mm] \Rightarrow [/mm] G ist isomorph zu G'

Richtig?


Ich habe aber keine Idee wie ich das dann beweisen soll.

Lg Hanna

Bezug
                        
Bezug
Isomorphie: Antwort
Status: (Antwort) fertig Status 
Datum: 08:14 Di 19.11.2013
Autor: hippias


> Danke schon mal.
>  
> >  Ich verstehe die Frage nicht. Fange vielleicht mit der

> > Reflexivitaet an: Ist jedes Pfeilmodell zu sich selbst
> > isomorph? Wie lautet ein Isomorphismus?
>  
> Ja das ist ja eigentlich logisch. Zeige ich das dann an den
> Eigenschaften? Also, dass folgendes gilt:
>  
>
> (1) [mm]\delta(0)[/mm] = 0
>  (2) [mm]\delta[/mm] (N(a)) = N [mm](\delta(a))[/mm]
>  
> Muss ich das jetzt noch beweisen? Das ist doch eigentlich
> selbsterklärend.

Ja, es ist bloed, muss aber gemacht werden. Wenn $(N, [mm] \delta)$ [/mm] ein Pfeilmodell ist, welche Funktion [mm] $\alpha:N\to [/mm] N$ liefert einen Isomorphismus?  

>  
>
> Muss ich bei der Symmetrie dann beweisen, dass ein
> Pfeilmodell G zu einem anderen Pfeilmodell G isomorph ist,
> wenn G isomorph zu G ist?

Ja. Gehe von einem Isomorphismus [mm] $\alpha:G\to [/mm] G$ aus. Was koennte man als Isomorphismus [mm] $:[u]G[/u]\to [/mm] G$ waehlen?

>  
>
>
> Und Transitivität würde dann bedeuten:
>  
> G ist isomorph zu G und G ist isomorph zu G' [mm]\Rightarrow[/mm] G
> ist isomorph zu G'
>  
> Richtig?

Ja.

>  
>
> Ich habe aber keine Idee wie ich das dann beweisen soll.

Wie oben: Seien [mm] $\alpha:G\to [/mm] G$ und [mm] $\beta:[u]G[/u]\to [/mm] G'$ Isomorphismen. Wie kann man damit einen Isomorphismus [mm] $:G\to [/mm] G'$ angeben?

>
> Lg Hanna


Bezug
                                
Bezug
Isomorphie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Di 19.11.2013
Autor: HannSG


> > Danke schon mal.
>  >  
> > >  Ich verstehe die Frage nicht. Fange vielleicht mit der

> > > Reflexivitaet an: Ist jedes Pfeilmodell zu sich selbst
> > > isomorph? Wie lautet ein Isomorphismus?
>  >  
> > Ja das ist ja eigentlich logisch. Zeige ich das dann an den
> > Eigenschaften? Also, dass folgendes gilt:
>  >  
> >
> > (1) [mm]\delta(0)[/mm] = 0
>  >  (2) [mm]\delta[/mm] (N(a)) = N [mm](\delta(a))[/mm]
>  >  
> > Muss ich das jetzt noch beweisen? Das ist doch eigentlich
> > selbsterklärend.
>  Ja, es ist bloed, muss aber gemacht werden. Wenn [mm](N, \delta)[/mm]
> ein Pfeilmodell ist, welche Funktion [mm]\alpha:N\to N[/mm] liefert
> einen Isomorphismus?  
> >  

Zum Verständnis: Das N steht hier für die Nachfolgerbildung nicht für die nat. Zahlen, oder?

Entschuldigung, aber das verstehe ich nicht. Warum muss ich jetzt eine Funktion aufstellen? Das Pfeilmodell soll doch zu sich selbst isomorph sein.


> >
> > Muss ich bei der Symmetrie dann beweisen, dass ein
> > Pfeilmodell G zu einem anderen Pfeilmodell G isomorph ist,
> > wenn G isomorph zu G ist?
>  Ja. Gehe von einem Isomorphismus [mm]\alpha:G\to [u]G[/u][/mm] aus. Was
> koennte man als Isomorphismus [mm]:[u]G[/u]\to G[/mm] waehlen?

Ich glaube mein Problem ist, dass ich nicht weiß, was ich mir unter einem Isomorphismus vorzustellen habe. Wie kann ich denn einen Isomorphismus wählen?

> >
> >
> > Und Transitivität würde dann bedeuten:
>  >  
> > G ist isomorph zu G und G ist isomorph zu G' [mm]\Rightarrow[/mm] G
> > ist isomorph zu G'
>  >  
> > Richtig?
>  Ja.
>  >  
> >
> > Ich habe aber keine Idee wie ich das dann beweisen soll.
> Wie oben: Seien [mm]\alpha:G\to [u]G[/u][/mm] und [mm]\beta:[u]G[/u]\to G'[/mm]
> Isomorphismen. Wie kann man damit einen Isomorphismus [mm]:G\to G'[/mm]
> angeben?
>  >

> > Lg Hanna
>  


Ich bin leider immer noch ziemlich ratlos. Vielleicht können Sie mir das an (z.B.) der Symmetrie erklären. Dann kann ich das Vorgehen vielleicht leichter auf die Symmetrie und die Transitivität übertragen.
Danke für Ihre Mühe!
Lg Hanna

Bezug
                                        
Bezug
Isomorphie: Antwort
Status: (Antwort) fertig Status 
Datum: 08:05 Mi 20.11.2013
Autor: hippias


> > > Danke schon mal.
>  >  >  
> > > >  Ich verstehe die Frage nicht. Fange vielleicht mit der

> > > > Reflexivitaet an: Ist jedes Pfeilmodell zu sich selbst
> > > > isomorph? Wie lautet ein Isomorphismus?
>  >  >  
> > > Ja das ist ja eigentlich logisch. Zeige ich das dann an den
> > > Eigenschaften? Also, dass folgendes gilt:
>  >  >  
> > >
> > > (1) [mm]\delta(0)[/mm] = 0
>  >  >  (2) [mm]\delta[/mm] (N(a)) = N [mm](\delta(a))[/mm]
>  >  >  
> > > Muss ich das jetzt noch beweisen? Das ist doch eigentlich
> > > selbsterklärend.
>  >  Ja, es ist bloed, muss aber gemacht werden. Wenn [mm](N, \delta)[/mm]
> > ein Pfeilmodell ist, welche Funktion [mm]\alpha:N\to N[/mm] liefert
> > einen Isomorphismus?  
> > >  

>
> Zum Verständnis: Das N steht hier für die
> Nachfolgerbildung nicht für die nat. Zahlen, oder?

Ja bzw. nein: Im Deiner urspruenglicher Mitteilung habt ihr $N$ fuer die Nachfolgerabbildung benutzt und $G$ fuer die Grundmenge. Aber ich habe mit $N$ versehentlich die Grundmenge gemeint. In Deiner Notation haette ich besser so geantwortet: Wenn $(G,0,N)$ ein Pfeilmodell ist, welche Abbildung [mm] $\alpha:G\to [/mm] G$ liefert einen Isomorphismus?
  

>  
> Entschuldigung, aber das verstehe ich nicht. Warum muss ich
> jetzt eine Funktion aufstellen? Das Pfeilmodell soll doch
> zu sich selbst isomorph sein.

Du brauchst einen Isomorphismus von einem Pfeilmodell auf sich selbst. Was ein Isomorphismus ist, hast Du in Deiner ersten Mitteilung erklaert.

>
>
> > >
> > > Muss ich bei der Symmetrie dann beweisen, dass ein
> > > Pfeilmodell G zu einem anderen Pfeilmodell G isomorph ist,
> > > wenn G isomorph zu G ist?
>  >  Ja. Gehe von einem Isomorphismus [mm]\alpha:G\to [u]G[/u][/mm] aus. Was
> > koennte man als Isomorphismus [mm]:[u]G[/u]\to G[/mm] waehlen?
>  
> Ich glaube mein Problem ist, dass ich nicht weiß, was ich
> mir unter einem Isomorphismus vorzustellen habe. Wie kann
> ich denn einen Isomorphismus wählen?

Du musst aus dem gegebenen Isomorphismus [mm] $\alpha:G\to [/mm] G$ einen Isomorphismus [mm] $:[u]G[/u]\to [/mm] G$ konstruieren. Versuche, ob [mm] $\alpha^{-1}$ [/mm] die erforderlichen Eigenschaften hat.

>
> > >
> > >
> > > Und Transitivität würde dann bedeuten:
>  >  >  
> > > G ist isomorph zu G und G ist isomorph zu G' [mm]\Rightarrow[/mm] G
> > > ist isomorph zu G'
>  >  >  
> > > Richtig?
>  >  Ja.
>  >  >  
> > >
> > > Ich habe aber keine Idee wie ich das dann beweisen soll.
> > Wie oben: Seien [mm]\alpha:G\to [u]G[/u][/mm] und [mm]\beta:[u]G[/u]\to G'[/mm]
> > Isomorphismen. Wie kann man damit einen Isomorphismus [mm]:G\to G'[/mm]
> > angeben?
>  >  >

> > > Lg Hanna
> >  

>
>
> Ich bin leider immer noch ziemlich ratlos. Vielleicht
> können Sie mir das an (z.B.) der Symmetrie erklären. Dann
> kann ich das Vorgehen vielleicht leichter auf die Symmetrie
> und die Transitivität übertragen.
> Danke für Ihre Mühe!
>  Lg Hanna


Bezug
                                                
Bezug
Isomorphie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:55 Mi 20.11.2013
Autor: HannSG

Danke für die Hilfe.
Lg Hanna

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]