Irrtumswahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 12:28 So 22.03.2020 | Autor: | SamGreen |
Aufgabe | Ein Tiergartendirektor will in einer Umfrage herausfinden, ob die Mehrheit der Zoobesucher trotz einer bevorstehenden Erhöhung der Eintrittspreise den Zoo wieder
besuchen wollen. Von 20.000 Besuchern innerhalb einer Woche werden 50 befragt.
30 (= 60 %) antworten mit „Ja", 20 (z 40 %) mit „Nein".
a) Kann der Direktor mit 4,5% Irrtumswahrscheinlichkeit (t=2) sagen, dass die
Mehrheit aller Besucher trotzdem wieder kommen wird?
b) Ändert sich das Ergebnis, wenn insgesamt 30.000 Besucher im Zoo waren?
c) Von den 20.000 Besuchern werden 200 befragt. 120 (260%) antworten mit „Ja",
80 (=40%) mit „Nein". Kann der Direktor mit 4,5% Irrtums-wahrscheinlichkeit
sagen, dass die Mehrheit aller Besucher trotzdem wieder kommen wird?
|
<br>
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:30 So 22.03.2020 | Autor: | SamGreen |
ICh brauch hier bitte dringend Hilfe,
denn denn ich hab das nie ordentlich gelernt und kann nur vermuten.
Danke
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:33 So 22.03.2020 | Autor: | SamGreen |
[mm]V = p \pm t * \sqrt{ \frac{p*q}{n}}*\sqrt{1- \frac{n}{N}}[/mm]Ich hab da noch eine Formel
Was ist hier denn das N
weil n = 20000
und p ist dann wahrscheinlich 50/20000
und q = 1-p
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:52 So 22.03.2020 | Autor: | SamGreen |
hab jetzt doch lösen können.
Danke
|
|
|
|