matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikIrrfahrt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Irrfahrt
Irrfahrt < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irrfahrt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Mo 25.11.2013
Autor: Steffi8989

Aufgabe
Charakterisieren Sie einen stationären Prozess [mm] X=(X_{n}) [/mm] n € N. Ist die symmetrische Irrfahrt stationär?

Hallo zusammen,

ich habe in 2 Tagen eine Prüfung und leider noch jede Menge offene Fragen... Eine davon wäre obige:

Habe dazu irgendwie keine klare Lösung gefunden... Zum einen ist stationär, wenn das "Verhalten in einem endlichen Zeitintervall nicht von der genauen Lage dieses Zeitintervalls auf der Zeitachse abhängt."
also [mm] P[X_{k}+k_{1} [/mm] € [mm] A_{k_{1}},...
Danach wäre ja die Irrfahrt nicht stationär? Da ja jeder nächste Schritt von der "Lage" abhängt? Aber im Internet habe ich gefunden das die Irrfahrt stationär sei...

Kann mir jemand "stationär" vielleicht in einfacheren Worten beschreiben und mir bei der Beantwortung der Frage helfen :-)

Danke und Grüße!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Irrfahrt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:05 Di 26.11.2013
Autor: Steffi8989

Hi,

bin hier leider auch nicht mehr weiter gekommen... Hat keiner eine Idee wie und was es sich mit der Irrfahrt aufsich hat?

Bezug
        
Bezug
Irrfahrt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:44 Mi 27.11.2013
Autor: CaNi

Hi Steffi,

ich kann dir leider auch nicht wirklich viel helfen, bin selbst ein Statistik/Wahrscheinlichkeits - Anfänger....
Aber die Irrfahrt ist ein stoch. Prozess X = [mm] (X_{k}) [/mm] k € [mm] N_{0} [/mm]
Y = [mm] (Y_{N})_{n€N} [/mm] Bernoulli- Prozess ( also [mm] P[Y_{N}=1]=P=1-[P[Y_{n}=1] [/mm] ) zum Paramter p € [0, 1]

[mm] X_{k} [/mm] = [mm] \begin{cases} 0, & \mbox{für } k = 0 \\ 1 X_{k-1} + Y_{k} = \summe_{l=1}^{2} Y_{l}, & \mbox{für } k = 1, 2 \end{cases} [/mm]
viel mehr weiss ich leider auch nicht :D aber vllt ist das ein anhaltspunkt für andere die mehr Ahnung haben!

Grüße,
CaNi

Bezug
                
Bezug
Irrfahrt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:08 Mi 27.11.2013
Autor: Steffi8989

Hi,

danke CaNi! Zumindest weiss ich jetzt das die Irrfahrt also doch ein stationärer Prozess ist! Verstanden habe ich es leider aber noch nicht :( Vielleicht kann mir noch einer helfen?

Bezug
                        
Bezug
Irrfahrt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Fr 29.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]