matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKrypto,Kodierungstheorie,ComputeralgebraIrreduzibles Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Krypto,Kodierungstheorie,Computeralgebra" - Irreduzibles Polynom
Irreduzibles Polynom < Krypt.+Kod.+Compalg. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irreduzibles Polynom: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:19 Mo 31.05.2010
Autor: ringostar88

Hallo :-)

also, folgende Frage:
Wie kann ich zeigen, dass [mm] x^4 [/mm] + [mm] x^2 [/mm] + 1 in [mm] Z_2 [/mm] irreduzibel ist?

Ich weiß, dass ein Polynom irreduzibel ist, wenn es sich nicht in kleinere Polynome zerlegen lässt.
Wie mache ich das im obigen Fall?

Liebe Grüße, ringo

        
Bezug
Irreduzibles Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Mo 31.05.2010
Autor: reverend

Hallo Ringo,

versuch doch mal das []Eisensteinkriterium, achte aber darauf, dass Du Dich in [mm] \IZ_2 [/mm] bewegst.

Es wird sinnvoll sein, x in geeigneter Weise zu substituieren, etwa in der Form z=x-a mit "geschickt" gewähltem a.

Grüße
reverend

Bezug
                
Bezug
Irreduzibles Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Mo 31.05.2010
Autor: ringostar88

Ok, vielen Dank.
Ich habe also heraus bekommen, dass es reduzibel ist, da es sich in zwei kleinere Polynome teilen lässt. Also genauer:
[mm] x^4+x^2+1 [/mm] = [mm] (x^2+x+1)*(x^2+x+1) [/mm]

Und das bedeutet ja schon, dass das Polynom reduzibel ist.
Oder liege ich jetzt komplett falsch???

LG und DANKE

Bezug
                        
Bezug
Irreduzibles Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Mo 31.05.2010
Autor: reverend

Hallo Ringo,

> Ok, vielen Dank.
>  Ich habe also heraus bekommen, dass es reduzibel ist, da
> es sich in zwei kleinere Polynome teilen lässt. Also
> genauer:
>  [mm]x^4+x^2+1[/mm] = [mm](x^2+x+1)*(x^2+x+1)[/mm]
>  
> Und das bedeutet ja schon, dass das Polynom reduzibel ist.

Das bedeutet es natürlich.
Allerdings hast Du da einen Tippfehler.
Es muss [mm] x^4+x^2+1=(x^2+x+1)*(x^2\red{-x}+1) [/mm] heißen.

>  Oder liege ich jetzt komplett falsch???
> LG und DANKE

Übrigens gibt es über [mm] \IR [/mm] keine irreduziblen Polynome mit einem Grad [mm] \ge{3}. [/mm] Anders über [mm] \IQ [/mm] und, wie hier, über [mm] \IZ. [/mm] Da gibt es sie schon (siehe Eisenstein).

Grüße
reverend


Bezug
                                
Bezug
Irreduzibles Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Mo 31.05.2010
Autor: ringostar88

Vielen Dank für deine Denkanstöße!

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]