matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenIrreduzible Bestandteile
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Irreduzible Bestandteile
Irreduzible Bestandteile < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irreduzible Bestandteile: komplex
Status: (Frage) beantwortet Status 
Datum: 19:15 Fr 17.02.2017
Autor: pc_doctor

Aufgabe
Faktorisieren Sie das Polynom p(x) = [mm] x^4+2x^3-x-2 [/mm] in [mm] \IR[x] [/mm] und [mm] \IC[x] [/mm] in irreduzible Bestandteile.


Hallo,

ich habe die Nullstellen des Polynoms erraten, und dann Polynomdivison, dann p-q Formel usw. das ist kein Problem.

Am Ende habe ich das hier:
[mm] (x-1)(x+2)(x-(-\bruch{1}{2}+i\wurzel{\bruch{3}{4}}))(x-(-\bruch{1}{2}-i\wurzel{\bruch{3}{4}})) [/mm]

Das ist aber nur in [mm] \IC[x], [/mm] wie bekomme ich die irreduziblen Bestandteile über [mm] \IR[x] [/mm] raus, was muss ich konkret machen?

Vielen Dank im Voraus.

        
Bezug
Irreduzible Bestandteile: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Fr 17.02.2017
Autor: HJKweseleit


> Faktorisieren Sie das Polynom p(x) = [mm]x^4+2x^3-x-2[/mm] in [mm]\IR[x][/mm]
> und [mm]\IC[x][/mm] in irreduzible Bestandteile.
>  
> Hallo,
>  
> ich habe die Nullstellen des Polynoms erraten, und dann
> Polynomdivison, dann p-q Formel usw. das ist kein Problem.
>  
> Am Ende habe ich das hier:
>  
> [mm](x-1)(x+2)(x-(-\bruch{1}{2}+i\wurzel{\bruch{3}{4}}))(x-(-\bruch{1}{2}-i\wurzel{\bruch{3}{4}}))[/mm]
>  
> Das ist aber nur in [mm]\IC[x],[/mm] wie bekomme ich die
> irreduziblen Bestandteile über [mm]\IR[x][/mm] raus, was muss ich
> konkret machen?



Die Faktoren [mm] (x-(-\bruch{1}{2}+i\wurzel{\bruch{3}{4}})) [/mm] und [mm] (x-(-\bruch{1}{2}-i\wurzel{\bruch{3}{4}})) [/mm] liegen nicht in [mm] \IR[x]. [/mm] Ausmultipliziert geben sie [mm] x^2+x+1, [/mm] das in [mm] \IR[x] [/mm] irreduzibel ist.

Somit bekommst du [mm] (x-1)(x+2)*(x^2+x+1). [/mm]



Bezug
                
Bezug
Irreduzible Bestandteile: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Fr 17.02.2017
Autor: pc_doctor

Hallo,

achso, stimmt.

Also kann man zuerst immer die Lösungen über [mm] \IC [/mm] bestimmen und dann einfach die komplexen Nullstellen miteinander multiplizieren, um eine Lösung über [mm] \IR [/mm] zu bekommen. Das geht immer?

Bezug
                        
Bezug
Irreduzible Bestandteile: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 Sa 18.02.2017
Autor: Diophant

Hallo,

> Also kann man zuerst immer die Lösungen über [mm]\IC[/mm]
> bestimmen und dann einfach die komplexen Nullstellen
> miteinander multiplizieren, um eine Lösung über [mm]\IR[/mm] zu
> bekommen. Das geht immer?

Das kommt wiederum darauf an, wovon wir eigentlich sprechen. Wenn ein Polynom ausschließlich reelle Koeffizienten besitzt, dann treten komplexe Linearfaktoren stets paarweise in der Form [mm] (x-z)*(x-\overline{z})=x^2-2Re(z)*x+(Re(z))^2+(Im(z))^2 [/mm] auf. Dies sollte deine Frage beaantworten.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]