matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIrreduzibilität von Elementen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Irreduzibilität von Elementen
Irreduzibilität von Elementen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irreduzibilität von Elementen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 Di 30.11.2010
Autor: ThomasTT

Aufgabe
keine

Hi,

Unser Professor hat folgdendes definiert:
Sei [mm] (R,+,\cdot) [/mm] ein Integritätsbereich. Ein Element [mm] p\in [/mm] R (keine Einheit und [mm] p\ne [/mm] 0) heißt unzerlegbar/irreduzibel, falls es nur durch Einheiten oder Assoziierte von sich selbst teilbar ist.

Was genau bedeutet "Assoziierte von sich selbst" in diesem Zusammenhang? Ist damit vielleicht bloß ein Vielfaches gemeint?

Und eine Sache noch:
Sei [mm] f\in\IZ[X] [/mm] ein reduzibles Polynom. Kann ich dann folgende Aussage machen? Aussage:
Es existieren [mm] g,h\in\IZ[X] [/mm] mit [mm] g,h\ne \pm1 [/mm] und $f=g [mm] \cdot [/mm] h$.
Oder muss es so heißen:
Es existieren [mm] g,h\in\IZ[X] [/mm] mit grad g>0, grad h>0 und $f=g [mm] \cdot [/mm] h$.

Mit freundlichen Grüßen

Thomas

        
Bezug
Irreduzibilität von Elementen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Di 30.11.2010
Autor: wieschoo


> keine
>  Hi,
>  
> Unser Professor hat folgdendes definiert:
>  Sei [mm](R,+,\cdot)[/mm] ein Integritätsbereich. Ein Element [mm]p\in[/mm]
> R (keine Einheit und [mm]p\ne[/mm] 0) heißt
> unzerlegbar/irreduzibel, falls es nur durch Einheiten oder
> Assoziierte von sich selbst teilbar ist.
>  
> Was genau bedeutet "Assoziierte von sich selbst" in diesem
> Zusammenhang? Ist damit vielleicht bloß ein Vielfaches
> gemeint?

Vielfaches i.S.v. multipliziert mit einer Einheit.

Irreduzibel
Eine Nichteinheit [mm]0\neq p\in R[/mm] (Integritätsbereich) heißt irreduzibel [mm]:\gdw p=a*b \Rightarrow a \textrm{ ist Einheit} \vee b \textrm{ ist Einheit}[/mm]

Assoziertheit
ist eine Äquivalenzrelation, a und a' heißen assoziiert genau dann, wenn eine Einheit c existiert mit ca=a'

in [mm] $\IZ$ [/mm]
Ist 2 irreduzibel. Mann kann 2=2*1 (Da wäre 1 eine Einheit) schreiben. Oder 2= (-1)*(-2) damit wäre (-2) assoziert zu 2 also zu sich selbst. Also heißt assoziert zu sich selbst, wenn man sich mit einer Einheit multipliziert aufschreibt.
3=(-1)(-3). Oder in [mm] $\IZ [/mm] [i]:$ $1+i=(-1-i)*i$ wäre i auch eine Einheit und (-1-i) assoziert zu 1+i.

>  
> Und eine Sache noch:
>  Sei [mm]f\in\IZ[X][/mm] ein reduzibles Polynom. Kann ich dann
> folgende Aussage machen? Aussage:
>  Es existieren [mm]g,h\in\IZ[X][/mm] mit [mm]g,h\ne \pm1[/mm] und [mm]f=g \cdot h[/mm].

Beide g und h [mm] $\neq \pm [/mm] 1$? Du meinst g und h sollen keine Einheiten sein? Das ist ja gerade wegen der Definition so. Ist f reduzibel, so existiert eine Produkt aus zwei NICHTEINHEITEN a,b mit f = a*b.

>  
> Oder muss es so heißen:
>  Es existieren [mm]g,h\in\IZ[X][/mm] mit grad g>0, grad h>0 und [mm]f=g \cdot h[/mm].

Ist 2x+2 nicht auch reduzibel in [mm] $\IZ [/mm] [X]$?! g*h=2*(x+2)=2x+2=f. Damit wäre grad(g) = 0!!

>  
> Thomas


Bezug
                
Bezug
Irreduzibilität von Elementen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:25 Mi 01.12.2010
Autor: ThomasTT

Danke erstmal!

>Ist 2x+2 nicht auch reduzibel in [mm] \IZ [/mm] [X]?!
>g*h=2*(x+2)=2x+2=f. Damit wäre grad(g) = 0!!

Das heißt also: ein Polynom [mm] 0\ne f\in\IZ[X] [/mm] ist reduzibel, wenn es ein Produkt aus (mindestens) zwei Elementen [mm] g,h\in\IZ [/mm] ist, also f=gh. Und dabei dürfen g und h keine Einheiten sein. Also g könnte 2,3,4,... oder [mm] x,x^2,x^3,... [/mm] oder [mm] 623x^5-33x^2 [/mm] etc. sein, AUSSER 1 und -1 eben? Für h gilt genau selbiges?
Und sofern g oder h als 1 oder -1 gewählt werden müssen, so ist f irreduzibel?

Bezug
                        
Bezug
Irreduzibilität von Elementen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:10 Mi 01.12.2010
Autor: felixf

Moin!

> Danke erstmal!
>  
> >Ist 2x+2 nicht auch reduzibel in [mm]\IZ[/mm] [X]?!
>  >g*h=2*(x+2)=2x+2=f. Damit wäre grad(g) = 0!!
>  
> Das heißt also: ein Polynom [mm]0\ne f\in\IZ[X][/mm] ist reduzibel,
> wenn es ein Produkt aus (mindestens) zwei Elementen
> [mm]g,h\in\IZ[/mm] ist, also f=gh. Und dabei dürfen g und h keine
> Einheiten sein. Also g könnte 2,3,4,... oder [mm]x,x^2,x^3,...[/mm]
> oder [mm]623x^5-33x^2[/mm] etc. sein, AUSSER 1 und -1 eben? Für h
> gilt genau selbiges?

Exakt.

Die Einheiten in [mm] $\IZ[x]$ [/mm] sind gerade [mm] $\pm [/mm] 1$.

> Und sofern g oder h als 1 oder -1 gewählt werden müssen,
> so ist f irreduzibel?

In [mm] $\IZ[x]$: [/mm] [ok]

In $R[x]$ fuer beliebige Ringe $R$: nein. Bei $R = [mm] \IQ$ [/mm] darf $g$ z.B. auch 2 oder [mm] $\frac{129844298}{982498}$ [/mm] sein.

LG Felix


Bezug
                                
Bezug
Irreduzibilität von Elementen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:16 Mi 01.12.2010
Autor: ThomasTT

Ok. Ich glaube ich habe es verstanden. Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]