matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraIrreduzibel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Irreduzibel
Irreduzibel < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irreduzibel: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:24 So 22.05.2005
Autor: NECO

Hallo. Ich habe hier eine Aufgabe. Können Wir bitte versuchen zu lösen. Damit ich auch verstehe. Danke Danke

Sei K ein Körper un [mm] f(T)\in [/mm] K[T]  \ {0}. Man zeige

a) Hat f den Grad 2 oder 3, so ist f  genau dann irreduzibel, wenn f keine Nullstellen in K hat.

        
Bezug
Irreduzibel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 So 22.05.2005
Autor: DaMenge

Hi Neco,

ich will dir ein bischen helfen:
eine Nullstelle wird durch einen Faktor vom Grad 1 beschrieben:
also $ f(T)*(x-5) $ hat bei 5 eine Nullstelle.

Wir haben unser Polynom f(T).
angenommen es wäre irreduziebel - was heißt das?
das heißt, man kann es so schreiben:
$ f(T)=p(T)*q(T) $ , wobei p und q auch Polynome sind, aber echt kleineren Grades als f
wenn f grad 2 hat, welchen Grad hat dann p und q?
wenn f grad 3 hat, welchen Grad hat dann p und q?
was weißt du deshalb über Nullstellen?

und für die Rückrichtung musst du dir erstmal anschauen, wie ihr Nullstellen definiert habt, zum Beispiel: ist a eine Nullstelle von f(T), dann ist (T-a) ein Teiler von f.
Solltet ihr das SO definiert haben, ist die Rückrichtung wohl trivial, aber das musst du erstmal nachschlagen.

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]