Invertierung algebr. Zahlen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:56 So 19.04.2015 | Autor: | Gnocchi |
Aufgabe | Sei K= [mm] \IQ, a=\wurzel[3]{2} [/mm] und E= K[a]. Das Element a ist algebraisch über K und daher ist E ein Körper. Die Erweiterung E/K hat den Grad 3 und eine K-Basis ist [mm] 1,a,a^{2}
[/mm]
Geben sie [mm] (1+a)^{-1} [/mm] als K-Linearkombinationder Basis [mm] 1,a,a^{2} [/mm] an. |
Also wir wissen nach Voraussetzung, dass E/K den Grad 3 hat.
Mit unserem a erhalten wir dann das Minimalpolynom f = [mm] t^{3}-2
[/mm]
Dieses ist irreduzibel nach Eisenstein.
So, nun zur eigentlichen Aufgabe.
Ich hatte bisher folgende Idee:
Wir wissen ja, dass gilt [mm] a^3-2=0, [/mm] weil a eine Nullstelle von f ist.
[mm] a^3-2 [/mm] = 0
[mm] \gdw a^3=2
[/mm]
[mm] \gdw \bruch{a^{3}}{2}=1
[/mm]
[mm] \gdw \bruch{a^{3}}{2} [/mm] * [mm] (1+a)^{-1} [/mm] = [mm] (1+a)^{-1}
[/mm]
Nun fehlt mir die Umformung wie ich das in die Form bringe, dass ich das nur mit [mm] a^{2},a [/mm] und 1 stehen habe um die Darstellung bzgl der K-Basis zu erhalten.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:13 So 19.04.2015 | Autor: | hippias |
Da Du wissen moechtest, wie das Inverse von [mm] $1+\alpha$ [/mm] in $E$ aussieht, nimm ein beliebiges [mm] $x+y\alpha+ z\alpha^{2}\in [/mm] E$, dargestellt in der gegebenen Basis [mm] $1,\alpha,\alpha^{2}$, [/mm] und mache den Ansatz [mm] $(1+\alpha)(x+y\alpha+ z\alpha^{2})=1$. [/mm] Nun vereinfache die linke Seite und fuehre einen Koeffizientenvergleich durch.
|
|
|
|