matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenInvertierbarkeit von Matrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Invertierbarkeit von Matrizen
Invertierbarkeit von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbarkeit von Matrizen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:29 Do 11.06.2009
Autor: Owen

Aufgabe
Gegeben sei die Matrix [mm] A=\pmat{ 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}} [/mm]
Für welche Werte von a, b , c ∈ [mm] \IR [/mm] ist A invertierbar?

Hallo Leute, also die Aufgabe wurde vorgerechnet und ich habe mir das ganze notiert:
det [mm] A=\vmat{ 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} } [/mm]  |Z1*(-1) |+Z2 |+Z3

[mm] \gdw \vmat{ 1 & a & a^{2} \\ 0 & b-a & b^{2}-a^{2} \\ 0 & c-a & c^{2}-a^{2} } [/mm] = [mm] \vmat{ b-a & b^{2}-a^{2} \\ c-a & c^{2}-a^{2} } [/mm]

[mm] =\vmat{ b-a & (b+a) (b-a) \\ c-a & (c+a) (c-a)} [/mm]

= (b-a) (c-a) [mm] \vmat{ 1 & b+a \\ 1 & c+a } [/mm]

= (b-a) (c-a) ((c+a)-(b+a))

=(b-a) (c-a) (c-b)

[mm] A^{-1} [/mm] existiert [mm] \gdw [/mm] det A [mm] \not=0\gdw a\not=b [/mm] und [mm] a\not=c [/mm] und [mm] b\not=c. [/mm]

Die rot markierten Abschnitte verunsichern mich etwas. Also er hat scheibar zuerst (b-a) und (c-a) quasi ausgeklammert und vor die Matrix geschrieben. Darf man aber  (b-a) * (c-a)  hintereinander schreiben. Die zwei Faktoren beziehen sich schließlich auf unterschiedliche Zeilen. Und wie kommt er nun von [mm] \vmat{ 1 & b+a \\ 1 & c+a } [/mm] auf ((c+a)-(b+a))? Hat er da die Zeilen voneinander subtrahiert oder wie?

        
Bezug
Invertierbarkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Do 11.06.2009
Autor: barsch

Hi Eugen,


> = (b-a) (c-a) [mm]\vmat{ 1 & b+a \\ 1 & c+a }[/mm]
>

> er hat scheibar zuerst (b-a) und (c-a) quasi ausgeklammert
> und vor die Matrix geschrieben. Darf man aber  (b-a) *
> (c-a)  hintereinander schreiben.

das darf er, da die Determinante linear in jeder Spalte (bzw. Zeile) ist.

Das heißt

[mm] det(a^1,a^2,...,\lambda_1*a^j,...,\lambda_2*a^l,...,a^z)=\lambda_1*det(a^1,a^2,...,a^j,...,\lambda_2*a^l,...,a^z)=\lambda_2*\lambda_1*det(a^1,a^2,...,a^j,...,a^l,...,a^z), [/mm]

wobei [mm] a^i [/mm] i=1,...,z Spaltenvektoren sind.


> Und wie kommt
> er nun von [mm]\vmat{ 1 & b+a \\ 1 & c+a }[/mm] auf ((c+a)-(b+a))?

Du hast am Ende nur noch [mm] \vmat{ 1 & b+a \\ 1 & c+a } [/mm] zu berechnen; also die Determinante einer [mm] 2\times{2} [/mm] - Matrix. Wie berechnet man die Determinante einer [mm] 2\times{2} [/mm] - Matrix?

Gruß barsch

Bezug
                
Bezug
Invertierbarkeit von Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 Do 11.06.2009
Autor: Owen

Achso, jetzt verstehe ich den Schritt, vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]