matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraInvertierbarkeit von Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Invertierbarkeit von Matrizen
Invertierbarkeit von Matrizen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbarkeit von Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Do 08.11.2007
Autor: SusanneK

Aufgabe
Sei [mm] A=\pmat{ 1 & 0 & -1 \\ 4 & 1 & 6 \\ 1 & 0 & 2 }[/mm] , [mm] B=\pmat{ 2 & 3 & 1 \\ 4 & 2 & 0 \\ 2 & 2 & 0 }[/mm] , [mm] C=\pmat{ 2 & 1 & 1 \\ 1 & 3 & 2 \\ 0 & 0 & 1 }[/mm]

Jetzt muss ich zu 10 Behauptungen angeben, ob sie wahr oder falsch sind.
Z.B.
1)  Wenn [mm] A,B,C \in M_{33}(\IR) [/mm], so sind A,B,C invertierbar
2)  Wenn [mm] A,B,C \in M_{33}(\IR[T]) [/mm], so sind A,B,C invertierbar
3)  Wenn [mm] A,B,C \in M_{33}(\IZ/26\IZ) [/mm], so sind A,B,C invertierbar
4)  Wenn [mm] A,B,C \in M_{33}(\IZ/49\IZ) [/mm], so sind A,B,C invertierbar

Hallo, ich habe folgenden Ansatz:
1) Ist wahr, ich kann alle 3 Matrizen in die Einheitsmatrix überführen und damit die inverse Matrix erzeugen.
2) Hier verstehe ich den Unterschied zu 1 nicht. Für die Invertierbarkeit macht es doch nichts aus, ob ich das in einem Polynomring mache - oder ?
3) + 4) Hier hätte ich bei beiden gedacht, dass sie falsch sind, aber bei der Überprüfung mit einem Matrizenrechner kam bei 4) invertierbar heraus.
Ich dachte, wenn ich eine Matrix nicht in die Einheitsmatrix überführen kann, ist sie nicht invertierbar - und hier liegt ja [mm] \IZ [/mm] zugrunde, und deshalb kann ich nicht mit Brüchen arbeiten.

Wo ist mein Denkfehler ?

Danke, Susanne.

        
Bezug
Invertierbarkeit von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Sa 10.11.2007
Autor: Sparqie

Du hast Recht, dass man in [mm] \IZ [/mm] nicht mit Brüchen arbeiten kann, aber wir befinden uns hier in [mm] \IZ/n\IZ [/mm] . Das heisst, dass wir modulo rechnen, so ist zum Beispiel in [mm] \IZ/26\IZ [/mm] 13+14=1. Wenn du das beachtest, sollte es möglich sein, die Matrizen in die Einheitsmatrix zu überführen.  

Bezug
                
Bezug
Invertierbarkeit von Matrizen: Danke !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Sa 10.11.2007
Autor: SusanneK

Habs jetzt kapiert - Danke !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]