matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenInvertierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Invertierbarkeit
Invertierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:39 Di 19.06.2012
Autor: Gnocchi

Aufgabe
Sei f: [mm] \IR^{2} \to \IR^{2}, f(x):=(x_1+x_2,x_1^{2}-x_2^{2}). [/mm] Wo ist f lokal [mm] C^{1} [/mm] invertierbar?
Berechnen Sie [mm] D(f^{-1})(1,0) [/mm]

Hab nun folgendes gezeigt:
U [mm] \subset \IR^{n} [/mm] offen: Ist gegeben, da wir uns im [mm] \IR^{2} [/mm] befinden und dieser sowohl offen als auch eine Teilmenge des [mm] \IR^{n} [/mm] ist.
f [mm] \in C^{1}(U,\IR^{n}): [/mm] Auch gegeben, da beide Komponenten von f(x) stetig sind und ihre partiellen Ableitungen jeweils auch.
Dann habe ich Df bestimmt:
Df [mm] =\pmat{ 1 & 1 \\ 2x_1 & -2x_2 } [/mm]
Df invertierbar:Dies ist ja genau der Fall, wenn die Determinate ungleich 0 ist. Dies gilt für alle [mm] x_1 \not= -x_2. [/mm]
Somit ist f an allen Stellen [mm] x_1 \not= -x_2 [/mm] lokal [mm] C^{1} [/mm] invertierbar.
Kann man das so machen oder muss ich noch irgendwas zeigen oder manche Teile genauer begründen?
Zum 2.Teil der Aufgabe:
(1,0) ist ja unser f(x). Also lassen sich die Gleichungen aufstellen:
I. [mm] x_1+x_2 [/mm] = 1
II: [mm] x_1^{2}-x_2^{2}=0 [/mm]
Aus II. folgt: [mm] x_1 [/mm] = [mm] \pm x_2 [/mm] und somit folgt aus I., dass [mm] x_1=x_2=\bruch{1}{2} [/mm] ist.
Das habe ich dann in mein allgemeines Df eingesetzt:
[mm] Df(x)=\pmat{ 1 & 1 \\ 1 & -1 }. [/mm]
Da habe ich dann die Einheitsmatrix drangeschrieben und durch Zeilenumformungen invertiert:
[mm] D(f^{-1})=\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2} & -\bruch{1}{2} } [/mm]

        
Bezug
Invertierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Di 19.06.2012
Autor: fred97


> Sei f: [mm]\IR^{2} \to \IR^{2}, f(x):=(x_1+x_2,x_1^{2}-x_2^{2}).[/mm]
> Wo ist f lokal [mm]C^{1}[/mm] invertierbar?
>  Berechnen Sie [mm]D(f^{-1})(1,0)[/mm]
>  Hab nun folgendes gezeigt:
>  U [mm]\subset \IR^{n}[/mm] offen: Ist gegeben, da wir uns im
> [mm]\IR^{2}[/mm] befinden und dieser sowohl offen als auch eine
> Teilmenge des [mm]\IR^{n}[/mm] ist.
>  f [mm]\in C^{1}(U,\IR^{n}):[/mm] Auch gegeben, da beide Komponenten
> von f(x) stetig sind und ihre partiellen Ableitungen
> jeweils auch.
>  Dann habe ich Df bestimmt:
>  Df [mm]=\pmat{ 1 & 1 \\ 2x_1 & -2x_2 }[/mm]
>  Df invertierbar:Dies
> ist ja genau der Fall, wenn die Determinate ungleich 0 ist.
> Dies gilt für alle [mm]x_1 \not= -x_2.[/mm]
>  Somit ist f an allen
> Stellen [mm]x_1 \not= -x_2[/mm] lokal [mm]C^{1}[/mm] invertierbar.
>  Kann man das so machen oder muss ich noch irgendwas zeigen
> oder manche Teile genauer begründen?
>  Zum 2.Teil der Aufgabe:
>  (1,0) ist ja unser f(x). Also lassen sich die Gleichungen
> aufstellen:
>  I. [mm]x_1+x_2[/mm] = 1
>  II: [mm]x_1^{2}-x_2^{2}=0[/mm]
>  Aus II. folgt: [mm]x_1[/mm] = [mm]\pm x_2[/mm] und somit folgt aus I., dass
> [mm]x_1=x_2=\bruch{1}{2}[/mm] ist.
>  Das habe ich dann in mein allgemeines Df eingesetzt:
>  [mm]Df(x)=\pmat{ 1 & 1 \\ 1 & -1 }.[/mm]
>  Da habe ich dann die
> Einheitsmatrix drangeschrieben und durch Zeilenumformungen
> invertiert:
>  [mm]D(f^{-1})=\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2} & -\bruch{1}{2} }[/mm]
>  


Alles bestens

FRED

Bezug
        
Bezug
Invertierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Di 19.06.2012
Autor: Gnocchi

Danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]