matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenInvertierbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Invertierbarkeit
Invertierbarkeit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbarkeit: nilpotente Matrizen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:55 Mo 11.06.2012
Autor: mathemaus2010

Aufgabe
Sei K ein Körper. Eine Matrix A [mm] \in K^{n,n} [/mm] heißt nilpotent, falls es ein k [mm] \in [/mm] N gibt mit [mm] A^{k} [/mm] = 0. Sei A [mm] \in K^{n,n} [/mm] nilpotent.

Zeigen Sie, dass μIn − A genau dann invertierbar ist, wenn μ [mm] \in [/mm] K [mm] \backslash [/mm] {0} ist.

Hallo liebes Forum =),


Mein Problem an dieser Aufgabe ist, dass ich nicht verstehe, was "μ" hier für eine Rolle spielt. Ich weiß, dass In − A invertierbar ist, aber ist das Vielfache der Einheitsmatrix - A auch invertierbar? Und wenn ja, wie kann ich das zeigen? Hat einer einen Tipp oder Denkanstoß?



Danke für die Hilfe =).


Ich habe diese Frage in keinem anderen Forum oder auf anderen Internetseiten gestellt.

        
Bezug
Invertierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:50 Mo 11.06.2012
Autor: mathemaus2010

kann mir keiner helfen? =(

Bezug
        
Bezug
Invertierbarkeit: Denkanstoß
Status: (Antwort) fertig Status 
Datum: 01:19 Di 12.06.2012
Autor: barsch

Hallo

> Sei K ein Körper. Eine Matrix A [mm]\in K^{n,n}[/mm] heißt
> nilpotent, falls es ein k [mm]\in[/mm] N gibt mit [mm]A^{k}[/mm] = 0. Sei A
> [mm]\in K^{n,n}[/mm] nilpotent.
>  
> Zeigen Sie, dass μIn − A genau dann invertierbar ist,

Was meinst du mit "In". Ich nehme an, dass soll die Einheitsmatrix sein. Ich bezeichne diese im Folgenden nur mit I.


> wenn μ [mm]\in[/mm] K [mm]\backslash[/mm] {0} ist.
>  Hallo liebes Forum =),
>  
>
> Mein Problem an dieser Aufgabe ist, dass ich nicht
> verstehe, was "μ" hier für eine Rolle spielt. Ich weiß,
> dass In − A invertierbar ist, aber ist das Vielfache der
> Einheitsmatrix - A auch invertierbar? Und wenn ja, wie kann
> ich das zeigen? Hat einer einen Tipp oder Denkanstoß?

Denkanstoß:

[mm]\mu*I-A[/mm] ist invertierbar, wenn [mm]det(\mu*I-A)\neq0[/mm].

[mm]det(\mu*I-A)[/mm] ist das charakteristische Polynom der Matrix A.

Wie sieht denn allgemein das charakteristische Polynom einer nilpotenten Matrix aus?

> Danke für die Hilfe =).
>  
>
> Ich habe diese Frage in keinem anderen Forum oder auf
> anderen Internetseiten gestellt.

Gruß
barsch


Bezug
                
Bezug
Invertierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:48 Di 12.06.2012
Autor: mathemaus2010

danke für deinen Denkanstoß, du bist meine Rettung =). Ich werde versuchen das jetzt mal nachzuvollziehen. =) Und ja In ist die Einheitsmatrix.

Bezug
                
Bezug
Invertierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:02 Di 12.06.2012
Autor: mathemaus2010

Also ich habe mir das jetzt folgendermaßen mit deinem Ansatz durchdacht:

μ I − A ist invertierbar, wenn det(μ I − A) [mm] \not= [/mm] 0


det (μ I − A) ist ja nun genau das charakteristische Polynom. Für eine nilpotente Matrix ist das char. Polynom: [mm] -1^{n} [/mm] μ^{n}. Daraus folgt nun:

det (μ I − A) = [mm] -1^{n} [/mm] μ^{n} [mm] \not= [/mm] 0

Damit [mm] -1^{n}μ^{n} \not= [/mm] 0 , muss μ^{n} [mm] \not= [/mm] 0  .

Stimmt das soweit? Das wäre ja die Hinrichtung und jetzt muss noch die Rückrichtung gezeigt werden, oder?  


Danke, dass du mir hilfst? =)

Bezug
                        
Bezug
Invertierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:08 Di 12.06.2012
Autor: fred97


> Also ich habe mir das jetzt folgendermaßen mit deinem
> Ansatz durchdacht:
>
> μ I − A ist invertierbar, wenn det(μ I − A) [mm]\not=[/mm] 0
>  
>
> det (μ I − A) ist ja nun genau das charakteristische
> Polynom. Für eine nilpotente Matrix ist das char. Polynom:
> [mm]-1^{n}[/mm] μ^{n}. Daraus folgt nun:
>  
> det (μ I − A) = [mm]-1^{n}[/mm] μ^{n} [mm]\not=[/mm] 0
>
> Damit [mm]-1^{n}μ^{n} \not=[/mm] 0 , muss μ^{n} [mm]\not=[/mm] 0  .
>
> Stimmt das soweit?

Ja, nur fürchterlich aufgeschrieben.

>  Das wäre ja die Hinrichtung und jetzt
> muss noch die Rückrichtung gezeigt werden, oder?  

Geht in einem Aufwasch:

Sei A nilpotent und [mm] p_A [/mm] das char. Polynom. Dann ist [mm] p_A(\lambda)=(-1)^n\lambda^n. [/mm]

[mm] \mu [/mm] I-A invertierbar  [mm] \gdw \mu [/mm] ist kein Eigenwert von A [mm] \gdw p_A(\mu) \ne [/mm] 0 [mm] \gdw \mu \ne [/mm] 0.

FRED

>
>
> Danke, dass du mir hilfst? =)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]