matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesInvertierbar, Inverse,Injektiv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Invertierbar, Inverse,Injektiv
Invertierbar, Inverse,Injektiv < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbar, Inverse,Injektiv: Beweis verstehen
Status: (Frage) beantwortet Status 
Datum: 11:01 Fr 17.08.2012
Autor: quasimo

Aufgabe
Seien A, A' [mm] \in M_{n \times n} (\IK) [/mm]
Und A' A = [mm] I_n [/mm]
So folgt A invertierbar, [mm] A^{-1} [/mm] = A'

Hallo
Beweis im Skriptum:
[mm] \psi_A [/mm] : [mm] \IK^n [/mm] -> [mm] \IK^n [/mm]
[mm] \psi_{A'} [/mm] : [mm] \IK^n [/mm] -> [mm] \IK^n [/mm]
[mm] \psi_{A'} \circ \psi_A [/mm] = [mm] \psi_{A'A} [/mm] = [mm] \psi_{I_n} [/mm] = [mm] id_{\IK^n} [/mm]
=> [mm] \psi_A [/mm] muss injektiv sein
=> wegen Dimensionsgründen (Lemma) [mm] \psi_A [/mm] Isomorphismus => A invertierbar.

Frage:
Mir ist nicht klar warum folgt dass [mm] \psi_A [/mm] injektiv ist??

Alles andere ist klar.
LG

        
Bezug
Invertierbar, Inverse,Injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Fr 17.08.2012
Autor: fred97


> Seien A, A' [mm]\in M_{n \times n} (\IK)[/mm]
>  Und A' A = [mm]I_n[/mm]
> So folgt A invertierbar, [mm]A^{-1}[/mm] = A'
>  Hallo
>  Beweis im Skriptum:
>  [mm]\psi_A[/mm] : [mm]\IK^n[/mm] -> [mm]\IK^n[/mm]

>  [mm]\psi_{A'}[/mm] : [mm]\IK^n[/mm] -> [mm]\IK^n[/mm]

>  [mm]\psi_{A'} \circ \psi_A[/mm] = [mm]\psi_{A'A}[/mm] = [mm]\psi_{I_n}[/mm] =
> [mm]id_{\IK^n}[/mm]
>  => [mm]\psi_A[/mm] muss injektiv sein

>  => wegen Dimensionsgründen (Lemma) [mm]\psi_A[/mm] Isomorphismus

> => A invertierbar.
>  
> Frage:
>  Mir ist nicht klar warum folgt dass [mm]\psi_A[/mm] injektiv ist??

Sei x [mm] \in \IK^n [/mm] und [mm] \psi_A(x)=0. [/mm] Dann ist

    x= [mm] id_{\IK^n}(x)= \psi_{A'}(\psi_A(x))= \psi_{A'}(0)=0. [/mm]

FRED

>  
> Alles andere ist klar.
>  LG


Bezug
                
Bezug
Invertierbar, Inverse,Injektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 Fr 17.08.2012
Autor: quasimo

Hallo,
Danke für die Antwort.
Habe es verstanden,

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]