matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieInverser Limes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Inverser Limes
Inverser Limes < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverser Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:25 Do 02.12.2010
Autor: Tinuviel-Aelin

Aufgabe
p Primzahl, n [mm] \ge [/mm] 1. [mm] \IZ/p^{n}\IZ [/mm] Restklassenring.
Die Restklassenabbildung [mm] \IZ \to \IZ/p^{n}\IZ [/mm] , x [mm] \mapsto [/mm] x mod [mm] p^{n} [/mm] verschwindet auf [mm] p^{m}\IZ [/mm] für alle m [mm] \ge [/mm] n; d.h. es gibt Restklassenabbildungen [mm] \rho_{n} [/mm] : [mm] \IZ/p^{n+1}\IZ \to \IZ/p^{n}\IZ. [/mm]

Hallo,
ich versuche gerade die Konstruktion des inversen (/projektiven) Limes' zu verstehen. Als Grundlage dafür dient obige Aussage. Dabei sind mir zwei Dinge nicht ganz klar:
1. Sind die Elemente des Restklassenrings [mm] \IZ/p^{n}\IZ [/mm] wieder Restklassenringe für jeweils feste p (d.h. es gäbe n Elemente, die dann wieder [mm] p^{n} [/mm] Restklassen enthalten?)? Oder sind es sämtliche Restklassen, die es für alle verschiedenen p und verschiedenen n insgesamt gibt?
2. (Hauptproblem:) Was bedeutet: "die Abbildung verschwindet"? Heißt das einfach, dass sie für m [mm] \ge [/mm] n nicht definiert ist? Das würde vielleicht erklären, wieso bei der Definition des inversen Limes dann [mm] \rho_{n}(x_{n+1}) [/mm] = [mm] x_{n} [/mm]  gilt?

Ich bin ziemlich verwirrt... Danke für jede Hilfe!

        
Bezug
Inverser Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 07:53 Do 02.12.2010
Autor: felixf

Moin!

> p Primzahl, n [mm]\ge[/mm] 1. [mm]\IZ/p^{n}\IZ[/mm] Restklassenring.
>  Die Restklassenabbildung [mm]\IZ \to \IZ/p^{n}\IZ[/mm] , x [mm]\mapsto[/mm]
> x mod [mm]p^{n}[/mm] verschwindet auf [mm]p^{m}\IZ[/mm] für alle m [mm]\ge[/mm] n;
> d.h. es gibt Restklassenabbildungen [mm]\rho_{n}[/mm] :
> [mm]\IZ/p^{n+1}\IZ \to \IZ/p^{n}\IZ.[/mm]
>
>  Hallo,
>  ich versuche gerade die Konstruktion des inversen
> (/projektiven) Limes' zu verstehen. Als Grundlage dafür
> dient obige Aussage. Dabei sind mir zwei Dinge nicht ganz
> klar:

Mir scheint, deine Frage handelt nicht wirklich vom projektiven Limes, sondern allgemein von Restklassenringen.

>  1. Sind die Elemente des Restklassenrings [mm]\IZ/p^{n}\IZ[/mm]
> wieder Restklassenringe für jeweils feste p (d.h. es gäbe
> n Elemente, die dann wieder [mm]p^{n}[/mm] Restklassen enthalten?)?

Die Elemente von [mm] $\IZ/p^n\IZ$ [/mm] sind Nebenklassen $a + [mm] p^n\IZ$. [/mm] Davon gibt es [mm] $p^n$ [/mm] verschiedene, die du z.B. mit $a = 0, 1, [mm] \dots, p^n [/mm] - 1$ alle erhalten kannst.

> Oder sind es sämtliche Restklassen, die es für alle
> verschiedenen p und verschiedenen n insgesamt gibt?
>  2. (Hauptproblem:) Was bedeutet: "die Abbildung
> verschwindet"?

Allgemein sagt man in der Mathematik, dass eine Abbildung $f$ auf einer Menge $M$ verschwindet, wenn $f(M) = [mm] \{ 0 \}$ [/mm] ist.

Hier bedeutet das also: die Abbildung [mm] $\IZ \to \IZ/p^n\IZ$, [/mm] $x [mm] \mapsto [/mm] x + [mm] p^n\IZ$ [/mm] bildet jedes Element aus [mm] $p^m\IZ$ [/mm] auf $0 = 0 + [mm] p^n\IZ$ [/mm] ab (das ist die 0 in [mm] $\IZ/p^n\IZ$). [/mm]

Daraus, dass es auf [mm] $p^m\IZ$ [/mm] verschwindet, folgt mit Hilfe des Homomorphiesatzes, dass es eine eindeutig bestimmte Abbildung [mm] $\IZ/p^m\IZ \to \IZ/p^n\IZ$ [/mm] gibt mit $x + [mm] p^m\IZ \mapsto [/mm] x + [mm] p^n\IZ$. [/mm]

(Fuer $n > m$ waere diese nicht wohldefiniert. Fuer $n [mm] \le [/mm] m$ ist sie es jedoch.)

> Heißt das einfach, dass sie für m [mm]\ge[/mm] n
> nicht definiert ist?

Doch, sie ist fuer jedes $m [mm] \ge [/mm] n$ definiert.

> Das würde vielleicht erklären, wieso
> bei der Definition des inversen Limes dann
> [mm]\rho_{n}(x_{n+1})[/mm] = [mm]x_{n}[/mm]  gilt?

Das ist schlichtweg die Definition des projektiven Limes: er ist die Menge aller Folgen [mm] $(x_n)_{n\in\IN}$ [/mm] mit [mm] $\rho_n(x_{n+1}) [/mm] = [mm] x_n$ [/mm] fuer alle $n$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]