matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraInverse von Dreiecksmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Inverse von Dreiecksmatrix
Inverse von Dreiecksmatrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse von Dreiecksmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Di 18.07.2006
Autor: g_hub

Ich wollte mal fragen, ob jmd ein möglichst einfaches Verfahren kennt, mit dem man eine reguläre (obere/untere) Dreiecksmatrix invertieren kann...

danke schonmal

        
Bezug
Inverse von Dreiecksmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Di 18.07.2006
Autor: felixf

Hallo g_hub!

> Ich wollte mal fragen, ob jmd ein möglichst einfaches
> Verfahren kennt, mit dem man eine reguläre (obere/untere)
> Dreiecksmatrix invertieren kann...

Das ist recht einfach! Schreib doch mal das Gleichungssystem hin, was zu einer solchen Matrix gehoert! Dann hast du Gleichungen der Form (obere Dreiecksmatrix)

[mm] $a_{11} x_1 [/mm] + [mm] a_{12} x_2 [/mm] + [mm] \dots [/mm] + [mm] a_{1n} x_n [/mm] = [mm] b_1$ [/mm]
[mm] $a_{22} x_2 [/mm] + [mm] \dots [/mm] + [mm] a_{2n} x_n [/mm] = [mm] b_2$ [/mm]
[mm] $a_{nn} x_n [/mm]  = [mm] b_n$ [/mm]

Und die [mm] $a_{ii}$ [/mm] sind invertierbar. Zuerst rechnest du [mm] $x_n [/mm] = [mm] a_{nn}^{-1} b_n$ [/mm] aus. Und dann [mm] $x_{n-1} [/mm] = [mm] a_{n-1,n-1}^{-1} (b_{n-1} [/mm] - [mm] a_{n-1,n} x_n)$, [/mm] und dann [mm] $x_{n-2} [/mm] = [mm] a_{n-2,n-2}^{-1} (b_{n-2} [/mm] - [mm] a_{n-2,n-1} x_{n-1} [/mm] - [mm] a_{n-2,n} x_n)$, [/mm] etc.

LG Felix


Bezug
                
Bezug
Inverse von Dreiecksmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Di 18.07.2006
Autor: g_hub

dh, dass bei der Berechnung dann [mm] b=(b1,...,b_n) [/mm] = (0, ..., 1, ..., 0) gesetzt werden soll?

Ich kenne bereits ein Verfahren, bei dem man mit der gegebene Dreiecksmatrix A und der gesuchten Matrix B in der Gleichung AB=E ansetzt, und dann von unten rechts [mm] (b_{nn}=1/a_{nn}) [/mm] nach oben rechts (sehr lange formel) einsetzt...

Das ist mir alles irgendwie zu viel Rechnerei... ;-)
Gehts wirklich nicht einfacher?

Bezug
                        
Bezug
Inverse von Dreiecksmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Di 18.07.2006
Autor: felixf

Hallo!

> dh, dass bei der Berechnung dann [mm]b=(b1,...,b_n)[/mm] = (0, ...,
> 1, ..., 0) gesetzt werden soll?

Genau.

> Ich kenne bereits ein Verfahren, bei dem man mit der
> gegebene Dreiecksmatrix A und der gesuchten Matrix B in der
> Gleichung AB=E ansetzt, und dann von unten rechts
> [mm](b_{nn}=1/a_{nn})[/mm] nach oben rechts (sehr lange formel)
> einsetzt...

Hoert sich im Prinzip nach den gleichen Verfahren an, nur das halt alle solchen $b$'s wie du oben beschrieben hast gleichzeitig benutzt werden.

> Das ist mir alles irgendwie zu viel Rechnerei... ;-)

So viel ists auch wieder nicht :) Im Allgmeinen gehts (leider) nicht einfacher...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]