matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesInverse Modulo
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Inverse Modulo
Inverse Modulo < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Modulo: Übung
Status: (Frage) beantwortet Status 
Datum: 13:09 Do 28.11.2013
Autor: capri

Aufgabe
..

Hallo,

Ich habe mal eine kurze Frage, wenn ich eine 2x2 oder 3x3 Matrix modulo 26 invertieren möchte. Muss ich ja die Inverse zu einer Matrix A bestimmen.

2x2:

wenn ich laut formel 1/det(A) *  [mm] \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} [/mm] und ich sagen wir mal als det(A)=9 habe.

Habe ich ja [mm] \bruch{1}{9} [/mm] * die Matrix. und wie würde ich das in modulo 26 machen da ich keine Brüche haben darf? (mir ist leider kein bsp eingefallen.)

und 3x3:

genau das selbe Problem eigentlich wenn ich eine Inverse berechne und am ende durch eine Zahl dividieren möchte kann ich ja auch kein Bruch schreiben. wie mache ich das bei modulo berechnungen?

LG

        
Bezug
Inverse Modulo: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Do 28.11.2013
Autor: schachuzipus

Hallo,

> ..
> Hallo,

>

> Ich habe mal eine kurze Frage, wenn ich eine 2x2 oder 3x3
> Matrix modulo 26 invertieren möchte. Muss ich ja die
> Inverse zu einer Matrix A bestimmen.

>

> 2x2:

>

> wenn ich laut formel 1/det(A) * [mm] \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}[/mm] und ich sagen wir mal als
> det(A)=9 habe.

>

> Habe ich ja [mm]\bruch{1}{9}[/mm] * die Matrix. und wie würde ich
> das in modulo 26 machen da ich keine Brüche haben darf?

Nun, du musst dir klar machen, dass mit [mm]\frac{1}{9} \ \mod(26)[/mm] kein Bruch im eigentlichen Sinne gemeint ist, sondern das multiplikativ Inverse zu 9.

Um [mm]\frac{1}{9} \ \mod(26)[/mm] zu bestimmen, löse [mm]9\cdot{}x \ \equiv \ 1 \ \mod(26)[/mm]

Das geht hier per Hand recht schnell, man sieht auf den ersten oder zweiten Blick, dass [mm]x=3[/mm] es tut, denn [mm]9\cdot{}3=27 \ \equiv \ 1 \ \mos(26)[/mm]

Also [mm]\frac{1}{9} \ \hat = \ 3 \ \mod(26)[/mm]

Gruß

schachuzipus

Bezug
                
Bezug
Inverse Modulo: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Do 28.11.2013
Autor: capri

ok danke.
Was passiert denn wenn man es nicht so leicht hat wie jetzt bei 9? einfach immer ausprobieren oder?

LG

Bezug
                        
Bezug
Inverse Modulo: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Do 28.11.2013
Autor: schachuzipus

Hallo nochmal,

> ok danke.
> Was passiert denn wenn man es nicht so leicht hat wie
> jetzt bei 9? einfach immer ausprobieren oder?

Das wäre aber umständlich und zeitraubend ;-)

Das geht mit dem Euklidischen Algorithmus und Rückwärtseinsetzen (Lemma von Bézout):

Ich zeig's mal für dieses Bsp.:

Ges. [mm]9\cdot{}x\equiv 1 \ \mod(26)[/mm]

Bestimme den [mm]\ggT(9,26)[/mm]

[mm]26=2\cdot{}9+8[/mm]
[mm]9=1\cdot{}8+\red{1}[/mm]

Damit haben wir [mm]\ggT(26,9)=1[/mm]

Lösen wir die Gleichungen aus dem Euklid. Algo. danach auf:

[mm]1=9-1\cdot{}8[/mm] nun die erste nach 8 umstellen und ersetzen:

[mm]\red{1}=9-1\cdot{}8=9-1\cdot{}(26-2\cdot{}9)=\red{3\cdot{}9-26}[/mm]

Also haben wir [mm]9\cdot{}x\equiv \red{1}\equiv \red{3\cdot{}9-26}\equiv 3\cdot{}9 \ \mod(26)[/mm] (letzteres, weil [mm]-26\equiv 0 \ \mod(26)[/mm])

Damit [mm]9\cdot{}x\equiv 9\cdot{}3 \ \mod(26)[/mm]

Nun kannst du 9 kürzen, was [mm]x\equiv 3 \ \mod(26)[/mm] ergibt. (beachte [mm]\ggT(9,26)=1[/mm])


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]