matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenInverse Matrix mit Gauß Jordan
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Inverse Matrix mit Gauß Jordan
Inverse Matrix mit Gauß Jordan < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix mit Gauß Jordan: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 15:13 Mi 27.11.2013
Autor: Smuji

Hallo,

ich habe mal eine Frage zur Vorgehensweise beim Anwenden des Gauß Jordan Verfahren.

Um von einer gegebenen Matrix die Inverse zu erzeugen, kann man ja mit dem GJ-Verfahren einfach die Matrix links , Strich, rechts Einheitsmatrix hinschreiben und dann muss man durch addieren,subtrahieren,multipl. etc. die Urspüngliche Matrix auf die Einheitsmatrix umformen und hat dann rechts die Inverse stehen.


Nun ist meine Frage, wenn ich Zeilen multipliziere, dann gilt das ja natürlich auch bei der Einheitsmatrix, sonst würde diese sich ja nicht verändern.

Nur was ist wenn ich Spalten multipliziere ? Was Mache ich mit der
Einheitsmatrix ?
(ich schreibe es jetzt mal als determintante, denn da habe ich den trennstrich zwischen matrix und einheitsmatrix)


[mm] \vmat{ 1 & 2 \\ 0,5 & 3 }\vmat{ 1 & 0 \\ 0 & 1 } [/mm]


wenn ich nun die 2 eliminieren will, indem ich bsp. - 2 mal 1. zeile rechne.....

was muss ich dann rechts mti der einheitsmatrix machen ? wenn ich zeilen statt spalten nutze, ist es ja klar, dann wirkt es sich auf die ZEILE aus , aber bei der spalte ?

oder darf man bei diesem verfahren nur mit zeilen arbeiten ?

wäre nett wenn mir jemand auf die sprünge hilft

        
Bezug
Inverse Matrix mit Gauß Jordan: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Mi 27.11.2013
Autor: wieschoo

Die Idee hinter dem Gauß-Jordan-Algorithmus ist einfach die, dass du immer von links Elementarmatrizen an deine Ausgangsmatrix $A$ und die Einheitsmatrix $E$ multiplizierst, bis du die Einheitsmatrix aus $A$ erhälst.

Du machst also nichts weiteres als Elementarmatrizen [mm] $F_i$ [/mm] an $A$ zu multiplizieren und erhälst.
[mm] $F_n\cdot F_{n-1}\cdots F_2 \cdot F_1 [/mm] A = E$

Was ist [mm] $\prod_{i=0}^{n-1} F_{n-i}$? [/mm]   (*)

Würdest du jetzt Spaltenumformungen durchführen, so müsstest du Matrizen von rechts an die Matrix $A$ multiplizieren. Wenn du die Frage (*) dir beantwortest, so siehst du vllt. ein, dass dir Spaltenoperationen nichts bringen (es sei denn du transponierst mehrfach)

Bezug
                
Bezug
Inverse Matrix mit Gauß Jordan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Mi 27.11.2013
Autor: Smuji

ich verstehe nur bahnhof.


also geht das mit den spalten nicht, sondern nur mit den zeilen ?



ich habe mal was gerechnet und es per foto angehängt..


wo ist da mein fehler ?

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
Inverse Matrix mit Gauß Jordan: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Mi 27.11.2013
Autor: Steffi21

Hallo, dein Foto ist sehr unscharf, es geht wohl um

[mm] \pmat{ 3 & 1 & 4 \\ 0 & 1 & -2 \\ 1 & 2 & 0} [/mm]

[mm] \pmat{ 3 & 1 & 4 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1} [/mm]

neue 1. Zeile: Zeile 1 geteilt durch 3

[mm] \pmat{ 1 & \bruch{1}{3} & \bruch{4}{3} & \bruch{1}{3} & 0 & 0 \\ 0 & 1 & -2 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1} [/mm]

neue 3. Zeile: Zeile 1 minus Zeile 3

[mm] \pmat{ 1 & \bruch{1}{3} & \bruch{4}{3} & \bruch{1}{3} & 0 & 0 \\ 0 & 1 & -2 & 0 & 1 & 0 \\ 0 & -\bruch{5}{3} & \bruch{4}{3} & \bruch{1}{3} & 0 & -1} [/mm]

neue 3. Zeile: [mm] \bruch{5}{3} [/mm] mal Zeile 2 plus Zeile 3

[mm] \pmat{ 1 & \bruch{1}{3} & \bruch{4}{3} & \bruch{1}{3} & 0 & 0 \\ 0 & 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & -2 & \bruch{1}{3} & \bruch{5}{3} & -1} [/mm]

neue 1. Zeile: [mm] -\bruch{1}{3} [/mm] mal Zeile 2 plus Zeile 1

[mm] \pmat{ 1 & 0 & 2 & \bruch{1}{3} & -\bruch{1}{3} & 0 \\ 0 & 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & -2 & \bruch{1}{3} & \bruch{5}{3} & -1} [/mm]

neue 1. Zeile: Zeile 1 plus Zeile 3

[mm] \pmat{ 1 & 0 & 0 & \bruch{2}{3} & \bruch{4}{3} & -1 \\ 0 & 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & -2 & \bruch{1}{3} & \bruch{5}{3} & -1} [/mm]

neue 2. Zeile: Zeile 2 minus Zeile 3

[mm] \pmat{ 1 & 0 & 0 & \bruch{2}{3} & \bruch{4}{3} & -1 \\ 0 & 1 & 0 & -\bruch{1}{3} & -\bruch{2}{3} & 1 \\ 0 & 0 & -2 & \bruch{1}{3} & \bruch{5}{3} & -1} [/mm]

neue 3. Zeile: Zeile 3 geteilt durch -2

[mm] \pmat{ 1 & 0 & 0 & \bruch{2}{3} & \bruch{4}{3} & -1 \\ 0 & 1 & 0 & -\bruch{1}{3} & -\bruch{2}{3} & 1 \\ 0 & 0 & 1 & -\bruch{1}{6} & -\bruch{5}{6} & \bruch{1}{2}} [/mm]

Steffi
















Bezug
                                
Bezug
Inverse Matrix mit Gauß Jordan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:54 Do 28.11.2013
Autor: Smuji

danke,

habe es jetzt nochmal selbst probiert....komme aber wieder irgendwie auf falsche werte und habe jetzt abgebrochen.... habe es nochmal hochgeladen, was ich eben gerechnet habe...


vllt. kann mir ja jemand sagen was genau ich immer falsch mache...




Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                                        
Bezug
Inverse Matrix mit Gauß Jordan: Antwort
Status: (Antwort) fertig Status 
Datum: 13:05 Do 28.11.2013
Autor: angela.h.b.

Hallo,

ich kann das nicht so gut lesen, aber Du scheinst gleich im ersten Schritt "1.Zeile -2*3.Zeile " zu machen.
Da ist gleich ein Rechenfehler. Die neue 1. Zeile stimmt nicht.

LG Angela

Bezug
                                                
Bezug
Inverse Matrix mit Gauß Jordan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 Do 28.11.2013
Autor: Smuji

ja, das habe ich gemacht, aber warum darf man das nicht ?

ich versuche erst ganz links die matrix auf
1                                              
0                                              
0    zu bekommen, danach will ich die 2. spalte umformen

Bezug
                                                        
Bezug
Inverse Matrix mit Gauß Jordan: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 Do 28.11.2013
Autor: Steffi21

Hallo du kannst freilich für eine neue 1. Zeile rechnen:

Zeile 1 minus 2 mal Zeile 3, aber bitte korrekt

[mm] \pmat{ 1 & -3 & 4 & 1 & 0 & -2 \\ 0 & 1& -2 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 } [/mm]

deine nächster Schritt für eine neue 3. Zeile zu rechnen:

Zeile 1 minus Zeile 3

ist gut, ABER Chaos bei den Vorzeichen, so ist z.B. -3-2=-5

Steffi

Bezug
                                        
Bezug
Inverse Matrix mit Gauß Jordan: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Do 28.11.2013
Autor: Steffi21

Hallo, du hast gerechnet: Zeile 1 minus 2 mal Zeile 3, bei dir steht in der neuen 1. Zeile:

1 -3 0 1 0 -2

die 0 (nach der 3) ist falsch: 4-2*0=4, die korrekte 1. Zeile

1 -3 4 1 0 -2

Steffi



Bezug
                                                
Bezug
Inverse Matrix mit Gauß Jordan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Fr 29.11.2013
Autor: Smuji

also,

habe nochmal neu angefangen und irgendwie mache ich immer und immer wieder irgendwelche fehler.


3   1   4   l   1   0   0               - (2 x Z3)
0   1  -2   l   0   1   0
1   2   0   l   0   0   1              


1   -3   4   l   1   0   -2               + (3 x Z 2)
0   1   -2   l   0   1   0
1   2    0   l    0   0   1                - Z 1


1   0   -2   l   1   3  -2            
0   1   -2   l   0   1   0
0   5   -4   l  -1   0   3                 - (5 x Z 2)


1   0   -2   l   1   3  -2            
0   1   -2   l   0   1   0
0   0    6   l  -1  -5   3                   : (-3 x Z 2)


1   0   -2   l   1   3     -2              + (2 x Z 3)
0   1   -2   l   0   1      0              + (2 x Z 3)
0   0    1   l  -1   5/3   3


1   0   0   l   -1   6 1/3   4            
0   1   0   l   -2   4 1/3   6
0   0   1   l  -1    5/3      3


Die Lösung lautet aber:

1/6 [mm] \pmat{ 4 & 8 & -6 \\ -2 & -4 & 6 \\ -1 & -5 & 3 } [/mm]

Bezug
                                                        
Bezug
Inverse Matrix mit Gauß Jordan: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Fr 29.11.2013
Autor: angela.h.b.


> also,

>

> habe nochmal neu angefangen und irgendwie mache ich immer
> und immer wieder irgendwelche fehler.

>
>

> 3 1 4 l 1 0 0 - (2 x Z3)
> 0 1 -2 l 0 1 0
> 1 2 0 l 0 0 1

>
>

> 1 -3 4 l 1 0 -2 + (3 x Z 2)
> 0 1 -2 l 0 1 0
> 1 2 0 l 0 0 1 - Z 1

>
>

> 1 0 -2 l 1 3 -2
> 0 1 -2 l 0 1 0
> 0 5 -4 l -1 0 3 - (5 x Z 2)

>
>

> 1 0 -2 l 1 3 -2
> 0 1 -2 l 0 1 0
> 0 0 6 l -1 -5 3 : [mm] \red{(-3 x Z 2)} [/mm]

Hallo,

das Markierte ist keine erlaubte Zeilenumformung.

Du darfst Zeilen mit Zahlen multiplizieren,
Du darfst Vielfache von Zeilen zu anderen Zeilen addieren,
aber das Durcheinanderdividieren von Zeilen "gibt's nicht".

Dividiere die letzte Zeile durch 6, dann hast Du Deine 1 da, wo Du sie willst.

LG Angela

>
>

> 1 0 -2 l 1 3 -2 + (2 x Z 3)
> 0 1 -2 l 0 1 0 + (2 x Z 3)
> 0 0 1 l -1 5/3 3

>
>

> 1 0 0 l -1 6 1/3 4
> 0 1 0 l -2 4 1/3 6
> 0 0 1 l -1 5/3 3

>
>

> Die Lösung lautet aber:

>

> 1/6 [mm]\pmat{ 4 & 8 & -6 \\ -2 & -4 & 6 \\ -1 & -5 & 3 }[/mm]


Bezug
                                                                
Bezug
Inverse Matrix mit Gauß Jordan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 Fr 29.11.2013
Autor: Smuji

danke,

dann mache ich mal weiter, nachdem ich die 3. zeile durch 6 geteilt habe


1   0   -2   l   1       3      -2             + 2 x Z3
0   1   -2   l   0       1       0             + 2 x Z3
0   0    1   l  -1/6  -5/6   3/6                  


1   0    0   l   4/6    8/6    -1            
0   1    0   l  -2/6  -4/6      1            
0   0    1   l  -1/6  -5/6   3/6



wie du siehst, stimmt meine lösung leider immernoch nciht mit der lösung im buch überein ?!?!? =(




Bezug
                                                                        
Bezug
Inverse Matrix mit Gauß Jordan: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Fr 29.11.2013
Autor: Steffi21

Hallo,

du hast mit der inversen Matrix

[mm] \pmat{ \bruch{4}{6} & \bruch{8}{6} & -1 \\ -\bruch{2}{6} & -\bruch{4}{6 & 1} \\ -\bruch{1}{6} & -\bruch{5}{6} & \bruch{3}{6} } [/mm]

alles korrekt berechnet, ziehe jetzt den Faktor [mm] \bruch{1}{6} [/mm] raus

[mm] \bruch{1}{6}\pmat{ 4 & 8 & -6 \\ -2 & -4 & 6 \\ -1 & -5 & 3 } [/mm]

Steffi

Bezug
                                                                                
Bezug
Inverse Matrix mit Gauß Jordan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Fr 29.11.2013
Autor: Smuji

ah, vielen dank... aber MÜSSTE man den faktor 1/6 rausziehen ? oder könnte man ihn auch drinnen lassen ?

Bezug
                                                                                        
Bezug
Inverse Matrix mit Gauß Jordan: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Fr 29.11.2013
Autor: Steffi21

Hallo, das ist nicht zwingend notwendig, Steffi

Bezug
                                                                                                
Bezug
Inverse Matrix mit Gauß Jordan: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:36 Sa 30.11.2013
Autor: Smuji

ok,
vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]