Inverse Matrix bilden < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:48 Di 14.01.2014 | Autor: | Smuji |
Aufgabe | [mm] \bruch{1}{\wurzel{2}} \pmat{ 1 & 1 \\ -1 & 1 }
[/mm]
bilde die inverse matrix. |
irgendwie bekomme ich es nicht auf die reihe.....
versuche es mit dem gauß jordan verfahren
[mm] \vmat{ 1 & 1 \\ -1 & 1 }\vmat{ 1 & 0 \\ 0 & 1 }
[/mm]
Z2 + Z1
[mm] \vmat{ 1 & 1 \\ 0 & 2 }\vmat{ 1 & 0 \\ 1 & 1 }
[/mm]
Z2 * 0,5 * Z1 ?
[mm] \vmat{ 1 & 1 \\ 0 & 1 }\vmat{ 1 & 0 \\ 0,5 & 0 }
[/mm]
Z1 - Z2
[mm] \vmat{ 1 & 0 \\ 0 & 1 }\vmat{ 0,5 & 0 \\ 0,5 & 0 }
[/mm]
[mm] \bruch{1}{\wurzel{2}} \pmat{ 0,5 & 0 \\ 0,5 & 0 }[/mm]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:52 Di 14.01.2014 | Autor: | fred97 |
> [mm]\bruch{1}{\wurzel{2}} \pmat{ 1 & 1 \\ -1 & 1 }[/mm]
>
> bilde die inverse matrix.
>
>
> irgendwie bekomme ich es nicht auf die reihe.....
>
> versuche es mit dem gauß jordan verfahren
>
>
> [mm]\vmat{ 1 & 1 \\ -1 & 1 }\vmat{ 1 & 0 \\ 0 & 1 }[/mm]
>
>
> Z2 + Z1
>
> [mm]\vmat{ 1 & 1 \\ 0 & 2 }\vmat{ 1 & 0 \\ 1 & 1 }[/mm]
>
> Z2 * 0,5 * Z1 ?
>
> [mm]\vmat{ 1 & 1 \\ 0 & 1 }\vmat{ 1 & 0 \\ 0,5 & 0 }[/mm]
Hier sollte stehen:
[mm]\vmat{ 1 & 1 \\ 0 & 1 }\vmat{ 1 & 0 \\ 0,5 & 0,5 }[/mm]
FRED
>
> Z1 - Z2
>
> [mm]\vmat{ 1 & 0 \\ 0 & 1 }\vmat{ 0,5 & 0 \\ 0,5 & 0 }[/mm]
>
>
>
> [mm]\bruch{1}{\wurzel{2}} \pmat{ 0,5 & 0 \\ 0,5 & 0 }[/mm]
|
|
|
|