matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenInverse Matrix/ Einheitsmatrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Inverse Matrix/ Einheitsmatrix
Inverse Matrix/ Einheitsmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix/ Einheitsmatrix: Denkanstoss
Status: (Frage) beantwortet Status 
Datum: 20:12 Di 06.10.2009
Autor: Bling

Aufgabe
Suchen Sie zu A = [mm] \pmat{ a & b \\ c & d } [/mm]
eine Matrix X = [mm] \pmat{ s & t \\ u & v } [/mm]
so, dass AX = I = [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] ist.

Hi, also was ich dazu rausgefunden habe ist, dass X = [mm] A^{-1} [/mm] sein muss, also die Inverse der Matrix A.
Daraus  lässt sich dann die Gleichung [mm] A^{-1} [/mm] = I/A erstellen.

Nun steh ich da aber an... kann man überhaupt zwei Matrizen "Dividieren"?

Was ich mir noch überlegt habe, ist das ich wohl am Schluss für s-v Werte erhalten sollte, die von a,b,c,d abhängig sind...

könnt ihr mir da helfen?

        
Bezug
Inverse Matrix/ Einheitsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Di 06.10.2009
Autor: MathePower

Hallo Bling,

> Suchen Sie zu A = [mm]\pmat{ a & b \\ c & d }[/mm]
>  eine Matrix X =
> [mm]\pmat{ s & t \\ u & v }[/mm]
>  so, dass AX = I = [mm]\pmat{ 1 & 0 \\ 0 & 1 }[/mm]
> ist.
>  Hi, also was ich dazu rausgefunden habe ist, dass X =
> [mm]A^{-1}[/mm] sein muss, also die Inverse der Matrix A.
>  Daraus  lässt sich dann die Gleichung [mm]A^{-1}[/mm] = I/A
> erstellen.
>  
> Nun steh ich da aber an... kann man überhaupt zwei
> Matrizen "Dividieren"?


Nein.


>  
> Was ich mir noch überlegt habe, ist das ich wohl am
> Schluss für s-v Werte erhalten sollte, die von a,b,c,d
> abhängig sind...
>  
> könnt ihr mir da helfen?


Multipliziere einfach die Matrix A mit der Matrix X.

Aus dem Vergleich mit der Einheitsmatrix
folgen dann 4 Bedingungsgleichungen, die erfüllt sein müssen.

Wie Du richtig erkannt hast,
läuft das dann darauf hinaus, daß [mm]X=A^{-1}[/mm] ist.


Gruss
MathePower

Bezug
                
Bezug
Inverse Matrix/ Einheitsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:08 Di 06.10.2009
Autor: Bling

ja... das hilft mir erst insofert, dass ich nun sehe, dass mein allererster Gedanke richtig war. ich hatte das auch schon mal aufgeschreiben, bin dann aber daraus nicht schlau geworden, bzw. konnte das ganze nicht auflösen.

ich hab das erhalten:

AX = [mm] \pmat{ as+bu & at+bv \\ cs+du & ct+dv } [/mm] = [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm]

so komme ich auf folgendes Gleichungssystem:

as+bu = 1
at+bv = 0
cs+du = 0
ct+dv = 1

bzw.

a 0 b 0   1
0 1 0 b   0
c 0 d 0   0
0 c 0 d   1

und wenn ich das mit dem Gaussalgoritmus auflöse erhalte ich

a 0 b    0      1
0 a 0    b      0
0 0 [mm] d-\bruch{bc}{a} [/mm] 0     [mm] -\bruch{c}{a} [/mm]
0 0 0    [mm] d-\bruch{bc}{a} [/mm]   0

1. stimmt das?
2. im Fall JA, wie komm ich jetzt damit auf u? durch Rückwärtseinsetzen?!? hab ich probiert... ging irgendwie nicht.

Bezug
                        
Bezug
Inverse Matrix/ Einheitsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Di 06.10.2009
Autor: MathePower

Hallo Bling,

> ja... das hilft mir erst insofert, dass ich nun sehe, dass
> mein allererster Gedanke richtig war. ich hatte das auch
> schon mal aufgeschreiben, bin dann aber daraus nicht schlau
> geworden, bzw. konnte das ganze nicht auflösen.
>  
> ich hab das erhalten:
>  
> AX = [mm]\pmat{ as+bu & at+bv \\ cs+du & ct+dv }[/mm] = [mm]\pmat{ 1 & 0 \\ 0 & 1 }[/mm]
>  
> so komme ich auf folgendes Gleichungssystem:
>
> as+bu = 1
>  at+bv = 0
>  cs+du = 0
>  ct+dv = 1
>  
> bzw.
>
> a 0 b 0   1
>  0 1 0 b   0
>  c 0 d 0   0
>  0 c 0 d   1
>  
> und wenn ich das mit dem Gaussalgoritmus auflöse erhalte
> ich
>  
> a 0 b    0      1
>  0 a 0    b      0
>  0 0 [mm]d-\bruch{bc}{a}[/mm] 0     [mm]-\bruch{c}{a}[/mm]
>  0 0 0    [mm]d-\bruch{bc}{a}[/mm]   0


Diese Zeile muß so lauten:

[mm]0 \ \ 0 \ \ 0 \ \ d-\bruch{b*c}{a} \ \ \red{1}[/mm]


>  
> 1. stimmt das?
>  2. im Fall JA, wie komm ich jetzt damit auf u? durch
> Rückwärtseinsetzen?!? hab ich probiert... ging irgendwie
> nicht.


Nun, aus der 3. Zeile folgt

[mm]\left(d-\bruch{b*c}{a}\right)*u=-\bruch{c}{a}[/mm]

Woraus sich u bestimmt. (A invertierbar vorausgesetzt)

Dieses u setzt Du jetzt in die 1. Gleichung ein und bekommst das s.

Analog geht das für v.


Gruss
MathePower

Bezug
                                
Bezug
Inverse Matrix/ Einheitsmatrix: "gegen den Kopfschlag"
Status: (Frage) beantwortet Status 
Datum: 22:02 Di 06.10.2009
Autor: Bling

Danke für die Hilfe. War ja ne recht einfache Sache wenn man sich nicht verrechnet...

hab jetzt für

[mm] s=\bruch{d}{ad-bc} [/mm]
[mm] t=\bruch{-b}{ad-bc} [/mm]
[mm] u=\bruch{-c}{ad-bc} [/mm]
[mm] v=\bruch{a}{ad-bc} [/mm]

also: X = [mm] \pmat{ \bruch{d}{ad-bc} & \bruch{-b}{ad-bc} \\ \bruch{-c}{ad-bc} & \bruch{a}{ad-bc} } [/mm]

hoffe mal ich hab mich da nicht auch nochmal verrechnet.

Bezug
                                        
Bezug
Inverse Matrix/ Einheitsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Di 06.10.2009
Autor: XPatrickX

So stimmts [daumenhoch]

Bezug
                                        
Bezug
Inverse Matrix/ Einheitsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Di 06.10.2009
Autor: MathePower

Hallo Bling,

> Danke für die Hilfe. War ja ne recht einfache Sache wenn
> man sich nicht verrechnet...
>  
> hab jetzt für
>  
> [mm]s=\bruch{d}{ad-bc}[/mm]
>  [mm]t=\bruch{-b}{ad-bc}[/mm]
>  [mm]u=\bruch{-c}{ad-bc}[/mm]
>  [mm]v=\bruch{a}{ad-bc}[/mm]
>  
> also: X = [mm]\pmat{ \bruch{d}{ad-bc} & \bruch{-b}{ad-bc} \\ \bruch{-c}{ad-bc} & \bruch{a}{ad-bc} }[/mm]


Richtig. [ok]


>  
> hoffe mal ich hab mich da nicht auch nochmal verrechnet.


Gruss
MathePower

Bezug
                                                
Bezug
Inverse Matrix/ Einheitsmatrix: Regel
Status: (Frage) beantwortet Status 
Datum: 22:21 Di 06.10.2009
Autor: Bling

das sieht ja schwer verdächtig danach aus, als ob man die Inverse irgendwie schneller für jede beliebige n x n-Matrizen berechnen könnte, als jedesmal nachzurechnen...

ad-bc ist doch die Determinante der Matrix A = [mm] \pmat{ a & b \\ c & d }... [/mm]

aber wie komme ich ohne grossen Rechenaufwand auf die jeweiligen Zähler in den Brüchen meiner [mm] A^{-1}? [/mm]

Bezug
                                                        
Bezug
Inverse Matrix/ Einheitsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Di 06.10.2009
Autor: XPatrickX

Hallo!

> das sieht ja schwer verdächtig danach aus, als ob man die
> Inverse irgendwie schneller für jede beliebige n x
> n-Matrizen berechnen könnte, als jedesmal
> nachzurechnen...
>  
> ad-bc ist doch die Determinante der Matrix A = [mm]\pmat{ a & b \\ c & d }...[/mm]
>  

Richtig erkannt!

> aber wie komme ich ohne grossen Rechenaufwand auf die
> jeweiligen Zähler in den Brüchen meiner [mm]A^{-1}?[/mm]  

Es gilt:

[mm] $$A^{-1}=\frac{1}{\det(A)}*\text{adj}(A)$$ [/mm]

Wobei adj(A) die []Adjunkte bezeichnet.

Gruß Patrick

Bezug
                                                                
Bezug
Inverse Matrix/ Einheitsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:21 Di 06.10.2009
Autor: Bling

ok, aber das machts dann auch nicht einfacher zum Rechnen, wenn ich mir den Wikipedia-Link anschaue... da kann ich es direkt wieder so machen wie vorher bei meiner Aufgabe, anstatt mich da rumzuplagen und diese Adjunkte zu berechnen.

danke trotzdem und bis zur nächsten Frage;)

Bezug
                                                                        
Bezug
Inverse Matrix/ Einheitsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:50 Di 06.10.2009
Autor: XPatrickX

Das stimmt zum Rechnen ist das wirklich nicht gut geeignet. Dafür verwendet man der Regel den Gauß-Jordan-Algorithmus:
http://de.wikipedia.org/wiki/Inverse_Matrix#Gau.C3.9F-Jordan-Algorithmus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]