matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenInverse Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Inverse Matrix
Inverse Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:56 Fr 17.08.2012
Autor: Lu-

Aufgabe
Ich soll zeigen, dass die Inverse eine oberen Dreiecksmatrix eine obere Dreiecksmatrix ist.

Hallo,
Ich weiß es gibt im Forum schon viele Antworten zu solch einer Frage, aber ich würde trotzdem noch mal gerne aufschreiben wo ich stecke.
Ich habe selbst dran gearbeitet, jedoch habe ich viele Hinweise im Intrenet dafür verwendet.

[mm] \pmat{a_{11}&\cdots&a_{1n}\\ &\ddots&\vdots\\ 0&&a_{nn}}\pmat{b_{1i}\\ \vdots\\ b_{ni}}=\pmat{\delta_{1i}\\ \vdots\\ \delta_{ni}} [/mm]

Nun hab ich [mm] b_{ni} [/mm] = [mm] \delta_{ni} [/mm] / [mm] a_{nn} [/mm]
weiters $ [mm] b_{n-1.j} [/mm] $ =  $ [mm] \frac{\delta_{n-1.i} - a_{n-1.n}b_{ni}}{a_{n-1.n-1}} [/mm] $
weiters $ [mm] b_{n-2,j}=\frac{1}{a_{n-2,n-2}}(\delta_{n-2,j}-\sum_{k=n-1}^n a_{n-2,k}b_{k,j}) [/mm] $

Nun habe ich das allgemein hingeschrieben:
$ [mm] b_{ij}=\frac{1}{a_{ii}}\left( \delta_{ij}-\sum_{k=i+1}^{n}a_{ik}b_{kj}\right) [/mm] $

Jetzt muss ich zeigen, dass [mm] b_{ij} [/mm] =0 für i > j (denn dann ist es eine obere Dreieckmatrix)
Für i >j  ist nun in der Formel das Kroneckadelta 0
Also steht da:  $ [mm] b_{ij}=\frac{1}{a_{ii}}( \delta_{ij}-\sum_{k=i+1}^{n}a_{ik}b_{kj}) [/mm] $ = [mm] -\frac{1}{a_{ii}}* \sum_{k=i+1}^{n}a_{ik}b_{kj}) [/mm]

Weiter weiß ich nicht, ist das bist jetzt okay?

liebe grüße

        
Bezug
Inverse Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Sa 18.08.2012
Autor: wieschoo

Hi,
>  Also steht da:  [mm]b_{ij}=\frac{1}{a_{ii}}( \delta_{ij}-\sum_{k=i+1}^{n}a_{ik}b_{kj})[/mm]
> = [mm]-\frac{1}{a_{ii}}* \sum_{k=i+1}^{n}a_{ik}b_{kj})[/mm]


So ganz schnell geht es nicht.
Ich halte fest, was du schon hast

Für [mm]j=1,\ldots, n[/mm] hast du
[mm] $b_{nj}=\frac{\delta_{nj}}{a_{nn}}$ [/mm]
und
[mm] $b_{ij}=\frac{1}{a_{ii}}\left( \delta_{ij}-\sum_{k=i+1}^{n}a_{ik}b_{kj} \right),\quadd i=n-1,\ldots, [/mm] 1$

Das ist völlig analog zur Rückwärtssubstitution. Wegen [mm]a_{ii}\neq 0[/mm] existiert die Inverse!

Nun folgt Induktion:

Wir zeigen [mm]b_{tj}=0[/mm] für [mm]t>j[/mm] und [mm]j
IA: [mm]b_{nj}=\frac{\delta_{nj}}{a_{nn}}=0[/mm]

IVoraus: Sei nun [mm]b_{nj}=\ldots = b_{tj}=0[/mm] mit [mm]t>j+1[/mm]

IS [mm]b_{t-1,j}=\frac{1}{a_{t-1,t-1}}\left(\delta_{t-1,j}-\sum_{k=t}^{n}a_{s-1,k}b_{kj} \right)=0[/mm] Warum?

gruß
wieschoo

Bezug
                
Bezug
Inverse Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 So 19.08.2012
Autor: Lu-


> Nun folgt Induktion:
>  
> Wir zeigen [mm]b_{tj}=0[/mm] für [mm]t>j[/mm] und [mm]j
>  
> IA: [mm]b_{nj}=\frac{\delta_{nj}}{a_{nn}}=0[/mm]
>  
> IVoraus: Sei nun [mm]b_{nj}=\ldots = b_{tj}=0[/mm] mit [mm]t>j+1[/mm]
>  
> IS
> [mm]b_{t-1,j}=\frac{1}{a_{t-1,t-1}}\left(\delta_{t-1,j}-\sum_{k=t}^{n}a_{s-1,k}b_{kj} \right)=0[/mm]
> Warum?
>  
> gruß
>  wieschoo

Schönen Sonntag,
Danke

I.Schritt
t > j

> $ [mm] b_{t-1,j}=\frac{1}{a_{t-1,t-1}}\left(\delta_{t-1,j}-\sum_{k=t}^{n}a_{s-1,k}b_{kj} \right)=0 [/mm] $

Was ist das s? Ich denke es ist ein SChreibfehler und es gehört sO:
[mm] b_{t-1,j}=\frac{1}{a_{t-1,t-1}}\left(\delta_{t-1,j}-\sum_{k=t}^{n}a_{t-1,k}b_{kj} \right) [/mm]
Nach Induktionsvorraussetzung sind alle [mm] b_{kj} [/mm] der Summe 0.
[mm] a_{t-1,t-1}\not= [/mm] 0,
[mm] \delta_{t-1,j} [/mm] =1 <=> t-1 = j . Aber das kann ja vorkommen bei t > j ?

Liebe grüße,



Bezug
                        
Bezug
Inverse Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Mo 20.08.2012
Autor: wieschoo


> > Nun folgt Induktion:
>  >  
> > Wir zeigen [mm]b_{tj}=0[/mm] für [mm]t>j[/mm] und [mm]j
>  >  
> > IA: [mm]b_{nj}=\frac{\delta_{nj}}{a_{nn}}=0[/mm]
>  >  
> > IVoraus: Sei nun [mm]b_{nj}=\ldots = b_{tj}=0[/mm] mit [mm]t>j+1[/mm]
>  >  
> > IS
> >
> [mm]b_{t-1,j}=\frac{1}{a_{t-1,t-1}}\left(\delta_{t-1,j}-\sum_{k=t}^{n}a_{s-1,k}b_{kj} \right)=0[/mm]
> > Warum?
>  >  
> > gruß
>  >  wieschoo
> Schönen Sonntag,
>  Danke
>
> I.Schritt
>  t > j

>  
> >
> [mm]b_{t-1,j}=\frac{1}{a_{t-1,t-1}}\left(\delta_{t-1,j}-\sum_{k=t}^{n}a_{s-1,k}b_{kj} \right)=0[/mm]
>  
> Was ist das s? Ich denke es ist ein SChreibfehler und es
> gehört sO:
>  
> [mm]b_{t-1,j}=\frac{1}{a_{t-1,t-1}}\left(\delta_{t-1,j}-\sum_{k=t}^{n}a_{t-1,k}b_{kj} \right)[/mm]
>  

Da hast du Recht.

> Nach Induktionsvorraussetzung sind alle [mm]b_{kj}[/mm] der Summe
> 0.
>  [mm]a_{t-1,t-1}\not=[/mm] 0,

genau

>  [mm]\delta_{t-1,j}[/mm] =1 <=> t-1 = j . Aber das kann ja vorkommen

> bei t > j ?

Wenn t-1=j gilt, dann steht links [mm] $b_{jj}$ [/mm] und das darf ungleich 0 sein. Und alles ist gut.

>  
> Liebe grüße,
>  
>

und diese grüße zurück

Bezug
        
Bezug
Inverse Matrix: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 So 19.08.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]