matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeInverse Matrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Numerik linearer Gleichungssysteme" - Inverse Matrix
Inverse Matrix < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix: Tipp?
Status: (Frage) beantwortet Status 
Datum: 10:55 Mi 25.01.2006
Autor: abudabu

Aufgabe
Es sei $A$ eine invertierbare [mm] $n\times [/mm] n$ Matrix. Die Vektoren [mm] $x\in\IR^n$, $y\in\IR^n$ [/mm] seien gegeben und [mm] $y^T*A^{-1}*x \not= [/mm] -1$.
Zeigen Sie: Die Matrix $M = A + x * [mm] y^T$ [/mm] ist invertierbar und es gilt
[mm] $M^{-1}=A^{-1} [/mm] - [mm] \bruch{1}{ 1 + y^T * A^{-1} * x} [/mm] * [mm] \left(A^{-1} * x\right) \left(y^T * A^{-1}\right)$. [/mm]

Ich find einfach keinen Zugang zu dieser Aufgabe. Kann mir bitte jemand nen Tipp geben, wie ich das Ding knacken kann?

Danke
Ricky

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Inverse Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Mi 25.01.2006
Autor: Julius

Hallo abudabu!

Rechne einfach nach, dass [mm] $MM^{-1} =E_n$ [/mm] gilt.

Benutze dabei in der Rechnung, dass

[mm] $x\red{y^TA^{-1}x}y^TA^{-1} [/mm] = [mm] \red{y^TA^{-1}x}xy^TA^{-1}$ [/mm]

gilt.

Liebe Grüße
Julius

Bezug
                
Bezug
Inverse Matrix: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:58 Mi 25.01.2006
Autor: abudabu

Sorry, aber ich komm immer noch nicht weiter.
> [mm]x\red{y^TA^{-1}x}y^TA^{-1} = \red{y^TA^{-1}x}xy^TA^{-1}[/mm]

Gibts irgendwelche Regeln, nach denen ich Vektoren und Matrizen umstellen darf?
Gruß
Ricky


Bezug
                        
Bezug
Inverse Matrix: einfach ausrechnen!?
Status: (Antwort) fertig Status 
Datum: 18:14 Mi 25.01.2006
Autor: Bastiane

Hallo!

> Sorry, aber ich komm immer noch nicht weiter.
>  > [mm]x\red{y^TA^{-1}x}y^TA^{-1} = \red{y^TA^{-1}x}xy^TA^{-1}[/mm]

>  
> Gibts irgendwelche Regeln, nach denen ich Vektoren und
> Matrizen umstellen darf?

Also, mit der "Regel" von Julius kommt das eigentlich ziemlich schnell hin - du multiplizierst erst die Klammer aus, dann erhältst du etwas von der Form I-(irgendein Bruch)+irgendwas-(irgendein anderer Bruch) und wenn du das "irgendwas" erweiterst und auch noch auf den Bruchstrich schreibst, kannst du alles zusammenfassen, und zusammen mit dem ersten Bruch fällt es dann weg, sodass nur noch I übrig bleibt. Vielleicht schickst du uns mal deinen Ansatz und wir helfen dann ggf. weiter?

Viele Grüße
Bastiane
[cap]


Bezug
                                
Bezug
Inverse Matrix: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 19:48 Mi 25.01.2006
Autor: abudabu

Danke Bastiane,

wenn ich das so mache wie du sagst steht bei mir im Zähler des ersten Bruchs

[mm] -A*(A^{-1}*x)*(y^{T}*A^{-1}) [/mm]

und im Zähler des zweiten Bruchs

[mm] (-A+A^{-1}*x*y^{T}+A^{-1}*x*y^{T}*y^{T}*A^{-1}x-x*y^{T})*(A^{-1}*x)*(y^{T}*A^{-1}) [/mm]

damit die zwei Brüche wegfallen müsste ich also zeigen, dass

[mm] -A+(-A+A^{-1}*x*y^{T}+A^{-1}*x*y^{T}*y^{T}*A^{-1}x-x*y^{T})=0 [/mm]

das bekomm ich aber nicht hin - deshalb wollte ich wissen ob es vielleicht noch weitere Regeln zum Umstellen von Vektoren und Matritzen gibt... ich fühle mich bei sowas ziemlich ohnmächtig.

Gruß
Ricky

Bezug
                                        
Bezug
Inverse Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:39 Sa 28.01.2006
Autor: mathemaduenn

Hallo Ricky,
Das was Du da hingeschrieben hast, ist sicher nicht Null.
Mit so ein herausgelösten Teilergebnis ist es allerdings schwer zu sagen wo der Fehler liegt.
Leider blieb Deine Frage unbeantwortet. [sorry]
viele Grüße
mathemaduenn


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]