matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenInverse Cauchyfolgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Inverse Cauchyfolgen
Inverse Cauchyfolgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Cauchyfolgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:39 Di 22.05.2012
Autor: jack1975

Hallo zusammen,

ich möchte folgendes zeigen: Ist [mm] $(x_n)_n$ [/mm] eine Cauchyfolge in [mm] $\IQ$, [/mm] die keine Nullfolge ist, so ist [mm] $(x_n^{-1})_n$ [/mm] auch eine Cauchyfolge, wobei wir o.E. annehmen, dass alle [mm] $x_n \neq [/mm] 0$ sind. Einen Beweis dazu habe ich mir überlegt, aber ich muss irgendwo einen kleinen Fehler haben bzw. ich sehe nicht, wo ich benutzt habe dass [mm] $(x_n)_n$ [/mm] keine Nullfolge ist. Mein Beweis: Sei [mm] $\varepsilon [/mm] > 0$ gegeben und [mm] $N=N(\varepsilon) \in \IN$ [/mm] mit [mm] $\left| x_n - x_m \right| [/mm] < [mm] \varepsilon \cdot C^2$, [/mm] wobei $C [mm] \geq [/mm] 0$ mit [mm] $\left| x_n\right| \leq [/mm] C$ für alle $n [mm] \in \IN$ [/mm] (da jede Cauchyfolge beschränkt). Dann folgt für alle $n, m [mm] \geq [/mm] N$: [mm] $\left| \frac{1}{x_n} - \frac{1}{x_m}\right| [/mm] = [mm] \left| \frac{x_m - x_n}{x_nx_m}\right| \leq \frac{\varepsilon \cdot C^2}{C^2} [/mm] = [mm] \varepsilon$. [/mm]

Damit müsste die Folge der inversen Elemente ja eine Cauchyfolge sein, aber zum Beispiel [mm] $x_n [/mm] = 1/n$ erfüllt ja auch alle obigen Voraussetzungen -- bis auf keine Nullfolge zu sein -- weshalb die Folge der Inversen, also die Folge der natürlichen Zahlen ja auch keine Cauchyfolge darstellt. Kann mir jemand meinen Fehler zeigen bzw. die Lücke in der Argumentation stopfen?

Vielen Dank.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Inverse Cauchyfolgen: Kehrwertungleichung
Status: (Antwort) fertig Status 
Datum: 23:54 Di 22.05.2012
Autor: Helbig


> Hallo zusammen,
>  
> ich möchte folgendes zeigen: Ist [mm](x_n)_n[/mm] eine Cauchyfolge
> in [mm]\IQ[/mm], die keine Nullfolge ist, so ist [mm](x_n^{-1})_n[/mm] auch
> eine Cauchyfolge, wobei wir o.E. annehmen, dass alle [mm]x_n \neq 0[/mm]
> sind. Einen Beweis dazu habe ich mir überlegt, aber ich
> muss irgendwo einen kleinen Fehler haben bzw. ich sehe
> nicht, wo ich benutzt habe dass [mm](x_n)_n[/mm] keine Nullfolge
> ist. Mein Beweis: Sei [mm]\varepsilon > 0[/mm] gegeben und
> [mm]N=N(\varepsilon) \in \IN[/mm] mit [mm]\left| x_n - x_m \right| < \varepsilon \cdot C^2[/mm],
> wobei [mm]C \geq 0[/mm] mit [mm]\left| x_n\right| \leq C[/mm] für alle [mm]n \in \IN[/mm]
> (da jede Cauchyfolge beschränkt). Dann folgt für alle [mm]n, m \geq N[/mm]:
> [mm]\left| \frac{1}{x_n} - \frac{1}{x_m}\right| = \left| \frac{x_m - x_n}{x_nx_m}\right| \leq \frac{\varepsilon \cdot C^2}{C^2} = \varepsilon[/mm].

Es gilt zwar [mm] $|x_m*x_n|\le C^2$, [/mm] aber daraus folgt nicht [mm] $\bruch [/mm] 1 [mm] {|x_m*x_n|} \le \bruch [/mm] 1 [mm] {C^2}$. [/mm] Genau hier brauchst Du, daß [mm] $(x_n)$ [/mm] keine Nullfolge ist!

Gruß,
Wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]