matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenInverse Berechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Inverse Berechnen
Inverse Berechnen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:02 Fr 16.01.2009
Autor: Weisswurst

Aufgabe
Gauß Jordan Algorithmus auf [mm] \pmat{ 1 & 2 & 0 \\ 5 & 4 & 1 \\ 3 & 6 & 0} [/mm] und Einheitsmatrix anwenden.

Hi!
Bin beim Berechnen der Inversen Matrix von
[mm] \pmat{ 1 & 2 & 0 \\ 5 & 4 & 1 \\ 3 & 6 & 0} [/mm]
Auf das Problem gestoßen, dass bei Anwendung des GJ Algorithmus die letzte Zeile komplett null wird und weiss jetzt nicht wie weitermachen.

[mm] \pmat{ 1 & 2 & 0 \\ 5 & 4 & 1 \\ 3 & 6 & 0} [/mm] | [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1} [/mm]

1. Schritt:
Erste Zeile * -5 und dann zu zweiter Zeile hinzuaddieren
Erste Zeile * -3 und dann zu dritter Zeile hinzuaddieren
[mm] \pmat{ 1 & 2 & 0 \\ 0 & -6 & 1 \\ 0 & 0 & 0} [/mm] | [mm] \pmat{ 1 & 0 & 0 \\ -5 & 1 & 0 \\ -3 & 0 & 0} [/mm]

Und nu? Hab ich was falsch gemacht? Eigentlich dürfte ich doch gar nicht in die Situation kommen, dass in der letzten Zeile alles null wird.

Ich habe festgestellt, dass ich das Inverse der oben genannten Matrix auch nicht in Maxima errechnen lassen kann. Hängt das Problem mit meinem GJ Problem zusammen?

Grüße
Wurst

        
Bezug
Inverse Berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Fr 16.01.2009
Autor: statler


> Gauß Jordan Algorithmus auf [mm]\pmat{ 1 & 2 & 0 \\ 5 & 4 & 1 \\ 3 & 6 & 0}[/mm]
> und Einheitsmatrix anwenden.

Hi!

Die Angabe zum mathematischen Background finde ich nicht so lustig, wie sie vielleicht sein soll. Bei diesen Juxantworten weiß man dann nämlich nicht, auf welchem Niveau man antworten soll.

>  Bin beim Berechnen der Inversen Matrix von
>  [mm]\pmat{ 1 & 2 & 0 \\ 5 & 4 & 1 \\ 3 & 6 & 0}[/mm]
>  Auf das
> Problem gestoßen, dass bei Anwendung des GJ Algorithmus die
> letzte Zeile komplett null wird und weiss jetzt nicht wie
> weitermachen.

Die gegeben Matrix ist nicht invertierbar, die Spalten sind linear abhängig: 2mal 1. Spalte - 2. Spalte - 6mal 3. Spalte gibt Nullvektor.

> [mm]\pmat{ 1 & 2 & 0 \\ 5 & 4 & 1 \\ 3 & 6 & 0}[/mm] | [mm]\pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}[/mm]
>  
> 1. Schritt:
>  Erste Zeile * -5 und dann zu zweiter Zeile hinzuaddieren
>  Erste Zeile * -3 und dann zu dritter Zeile hinzuaddieren
>  [mm]\pmat{ 1 & 2 & 0 \\ 0 & -6 & 1 \\ 0 & 0 & 0}[/mm] | [mm]\pmat{ 1 & 0 & 0 \\ -5 & 1 & 0 \\ -3 & 0 & 0}[/mm]
>  
> Und nu? Hab ich was falsch gemacht? Eigentlich dürfte ich
> doch gar nicht in die Situation kommen, dass in der letzten
> Zeile alles null wird.

Beim Gauß-Algorithmus schon, das LGS ist ja lösbar. Aber eben nicht eindeutig. Das kriegt man dann in der 2. Klasse :-) s. o.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Inverse Berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:54 Fr 16.01.2009
Autor: Weisswurst

Ok, wusste nicht, dass ich das Inverse einer Matrix nur errechnen kann, wenn die Determinante [mm] \not=0 [/mm] ist.

Bezüglich meines mathematischen Hintergrundes ist meine Angabe, wenn auch tatsächlich aus Jux erfolgt, gar nicht so falsch. Ich habe mir schon immer sehr schwer mit der Mathematik getan und mich in meiner Schulzeit leider(!) nie wirklich drum gekümmert. Folgerichtig habe ich jetzt beträchtliche Lücken, die teils bis weit in den Stoff der Sekundarstufe I hineinreichen.
Wenn meine Angabe also zu einer grundschul artigen Antwort mit Bildchen führt ist das gut. Eine Antwort ala Formelsammlung reicht mir leider nicht. Ich bin sehr froh, dass die Erklärungen, die ich hier erhalte mir die sehr mathematisch gehaltenen Definitionen aus dem Skript meines Professors verständlicher machen.

Deshalb bedanke ich mich auch immer, wenn ich eine Antwort bekommen habe. Auch wenn das hier nicht üblich zu sein scheint.
Dankeschön ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]