matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisIntrapolation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Intrapolation
Intrapolation < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intrapolation: der 3 Weg
Status: (Frage) beantwortet Status 
Datum: 15:53 Mi 23.02.2005
Autor: noidea

Hallo zusammen

wie aus dem Thema oben deutlich wird handelt es sich um Intrapolation. Wir haben letzte Stunde ein Trassierungsproblem durchgefürt. Das ist was wir erarbeitet haben.


Zunächst einmal ein Graph damit das Problem klar wird

                       |
                       |
                       |
                       |
                       |
                       |                                       ------
                       |
                       |
                       |----------------------------------------------------


Ein stück liegt auf der x-Achse das andere da im Raum wie eingezeichnet(Koordinaten sind (5|2). Nun sollen die beiden Stück verbunden werden was für Möglichkeiten hat man da? Wir haben bisher 2 erarbeitet und zwar folgende


1) Ansatz einer linearen Verbindung

g(x)= m*x+b= [mm] \bruch{2}{5}x [/mm]

Somit gibt es keine Löcher in der Verbindung, d.h. die Bedingung der Stetigkeit ist erfüllt. Problem es gibt eine Abrupte Steigungsänderung.

2) Ansatz einer knickfreien Verbindung

(Differenzierbarkeit)

An den Anschlussstellen müssen sowohl die Funktionswerte als auch die Werte der Ableitung der Funktionen übereinstimmen

i)  f(0)=0       ii)   f´(0)=0
iii) f(5)=2     iiii)   f´(5)=0
__________________________________________________________________________________________________________________________

4 Bedingungen 4 Parameter

f(x)= ax³+bx²+cx+d* [mm] x^{0} [/mm]

Ansatz einer Polynomfunktion 3. Grades

i)      f(0)=a0³+b0²+c*0+d=0  darauf folgt d=0
ii)     f´(x)= 3a0²+2b*0+c =0  daraus folgt c=0
iii)    f(5) = a*125+b*25+c*5+d=2
iiii)   f´(5)= 3a*25+10b+c = 0


Vereinfachung

iii)   125a+25b=2     |*2
iiii)    75a+10b=0     |*5

250a+50b=4
375a+50b=0

Zieht man jetzt die untere Gleichung von der oberen ab, erhält man

-125a=4

daraus folgt a=- [mm] \bruch{4}{125} [/mm]

setzt man a nun ind die 125a+25b=2  Gleichung ein, kommt folgendes heraus

-4+25b=2

B=  [mm] \bruch{6}{25} [/mm]


Somit ergibt sich

- [mm] \bruch{4}{125}x³+6 \bruch{6}{25}x² [/mm]


Jetzt sind wir zu folgender Ansicht gekommen.

In den Anschlusspunkten muss die Krümmung gleich sein, wenn man nicht abrupt umlenken muss

Die Krümmung wir durch die 2. Ableitung beschrieben

d.h. f´´(0)=0
       f´´(5)= 0

ok das haben wir im Unterricht gemacht.

Nun sollen wir einen neuen Ansatz für f(x) mit i-iiii formulieren. Wer kann mir sagen was es da noch für Ansätze gibt? Ich habe wie mein Name schon sagt keine Ahnung

gruß tobbe

        
Bezug
Intrapolation: naja
Status: (Antwort) fertig Status 
Datum: 17:07 Mi 23.02.2005
Autor: FriedrichLaher

Hallo, Tobias

ganz verstehe ich's nicht wies gemeint ist
aber
man könnte natürlich auch [mm] $x^4 [/mm] + [mm] a*x^3 [/mm] + [mm] b*x^2 [/mm] + c*x + d$
ansetzen
oder ganz ohne Diff.rechnung 2 Kreisbögen.

Bezug
        
Bezug
Intrapolation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Mi 23.02.2005
Autor: Paulus

Lieber Tobias

ich denke, da nun 2 weitere Bedingungen dazugekommen sind, kann man mit dem Polynom auch um 2 Grade höher gehen.

Setze also:

[mm] $f(x)=ax^5+bx^4+cx^3+dx^2+ex+f$ [/mm]

Dann wird
[mm] $f'(x)=5ax^4+4bx^3+3cx^2+2dx+e$ [/mm]
[mm] $f''(x)=20ax^3+12bx^2+6cx+2d$ [/mm]

$f(0)=f'(0)=f''(0)=0_$ führt sofort zu f=0, e=0 und d=0.

Damit erhältst du schon mal:

[mm] $f(x)=ax^5+bx^4+cx^3$ [/mm]
[mm] $f'(x)=5ax^4+4bx^3+3cx^2$ [/mm]
[mm] $f''(x)=20ax^3+12bx^2+6cx$ [/mm]

Mit $f(5)=2_$, $f'(5)=0_$ und $f''(5)=0$ bekommst du ein Gleichungssystem, das du nach a, b und c auflösen kannst.

mit lieben Grüssen

Paul


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]