matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenIntervallkennzeichnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Intervallkennzeichnung
Intervallkennzeichnung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intervallkennzeichnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:22 Do 11.03.2010
Autor: Marcel08

Hallo Matheraum!



Ich hätte mal eine Frage zur formalen Darstellung von Intervallen im Hinblick auf die "Zahl" [mm] \infty. [/mm]


Gibt es einen fundamentalen Unterschied zwischen den folgenden Intervallen?


1.) [mm] [\infty,\infty] [/mm]

2.) [mm] (\infty,\infty) [/mm]

3.) [mm] [\infty,\infty) [/mm]


Welchen Unterschied macht es, ob ich [mm] \infty [/mm] als "Randpunkt" (sofern es denn überhaupt einer ist), in die Zahlenmenge mit einbeziehe? Wo endet das Intervall, wenn ich [mm] \infty [/mm] (wie bei 2. oder 3. aus dem Intervall ausschließe? Möglicherweise existiert die Darstellung mit den geschlossenem Intervall überhaupt nicht.



Gruß, Marcel

        
Bezug
Intervallkennzeichnung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:31 Do 11.03.2010
Autor: schachuzipus

Hallo Marcel,

> Hallo Matheraum!
>  
>
>
> Ich hätte mal eine Frage zur formalen Darstellung von
> Intervallen im Hinblick auf die "Zahl" [mm]\infty.[/mm]
>  
>
> Gibt es einen fundamentalen Unterschied zwischen den
> folgenden Intervallen?
>  
>
> 1.) [mm][\red{-}\infty,\infty][/mm]
>  
> 2.) [mm](\red{-}\infty,\infty)[/mm] [ok]
>  
> 3.) [mm][\red{-}\infty,\infty)[/mm]
>  
>
> Welchen Unterschied macht es, ob ich [mm]\infty[/mm] als "Randpunkt"
> (sofern es denn überhaupt einer ist), in die Zahlenmenge
> mit einbeziehe? Wo endet das Intervall, wenn ich [mm]\infty[/mm]
> (wie bei 2. oder 3. aus dem Intervall ausschließe?
> Möglicherweise existiert die Darstellung mit den
> geschlossenem Intervall überhaupt nicht.

Da hast du den Knackpunkt schon selbst erfasst.

[mm] $\infty$ [/mm] ist keine Zahl, also kannst du kein abgeschlossenes Intervall mit Grenze [mm] $\pm\infty$ [/mm] schreiben.

Erlaubt sind mit an der Grenze [mm] $\pm\infty$ [/mm] nur offene Intervallgrenzen.

Allerdings schreibt man manchmal (m.E. etwas lachs) beim Konvergenzradius [mm] $\rho$ [/mm] einer Potenzreihe, dass [mm] $\rho\in[0,\infty\red{]}$ [/mm] sein kann, womit man aber nicht die Zahl [mm] $\infty$ [/mm] als Grenze meint (es ist ja keine Zahl), sondern, dass ein unendlicher Konvergenzradius zugelassen ist ...

Also lass lieber die geschlossene Grenze bei [mm] $\pm\infty$ [/mm] weg ...

>  
>
>
> Gruß, Marcel


LG

schachuzipus

Bezug
                
Bezug
Intervallkennzeichnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:57 Do 11.03.2010
Autor: Marcel08

Alles klar. Danke schön.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]