matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieIntervalle angeben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Intervalle angeben
Intervalle angeben < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intervalle angeben: Hilfestellung
Status: (Frage) überfällig Status 
Datum: 13:12 Mo 16.06.2008
Autor: ahnungsloser_phillip

Aufgabe
Es sei [mm] u(x)=(x^\alpha [/mm] + [mm] x^\beta)^{-1}, x,\alpha,\beta [/mm] > 0.
Geben Sie abhängig von [mm] p\ge1 [/mm] Intervalle für [mm] \alpha [/mm] und [mm] \beta [/mm] an, so dass u [mm] \in \mathcal{L}^p((0,\infty),\lambda^1). [/mm]
Beweisen Sie Ihre Aussage.

Hallo!
Ich bin zu obiger Aufgabe leider total überfordert.
Da ich nicht einmal weiß, was man von mir will, fehlt mir jeglicher Ansatz.
Kann mir jemand helfen? Was soll ich machen? Ansatz?
Vielen Dank!
Phillip

        
Bezug
Intervalle angeben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:10 Di 17.06.2008
Autor: fred97

Da Du als Math. Background "MatheGk 12 Gymn." angegeben hast, muß ich Dich erstmal fragen, was Ihr darunter

$ [mm] \in \mathcal{L}^p((0,\infty),\lambda^1) [/mm] $

versteht.
Entweder stimmt Dein Math. Background nicht, oder Ihr versteht unter

$ [mm] \in \mathcal{L}^p((0,\infty),\lambda^1) [/mm] $

etwas anderes als ich.

FRED

Bezug
                
Bezug
Intervalle angeben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:14 Mi 18.06.2008
Autor: ahnungsloser_phillip

Hi Fred,
mein Mathebackground stimmt schon.
Ich höre mir allerdings schon einmal die ein oder andere Vl an der Uni an.
Ich kann die Scheine jetzt schon erwerben und sie mir im Studium anrechnen lassen. So kann ich etwas Zeit sparen.
Phillip

Bezug
        
Bezug
Intervalle angeben: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 So 22.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]