matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenIntervall
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Trigonometrische Funktionen" - Intervall
Intervall < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intervall: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:52 Mo 03.03.2008
Autor: manolya

Aufgabe
Gesucht ist die Stelle x im Intervall [ 4 [mm] \pi [/mm] ;4,5 [mm] \pi [/mm] ],für die glt :
sin x =0,6.

Tagchen,

also mir fehlt der Ansatz,wie ich dass machen muss!
Würde mich auf Eure HIlfe freuen.

Danke um Voraus.

Lg


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[Hier gibst du bitte die direkten Links zu diesen Fragen an.]
oder
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Intervall: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Mo 03.03.2008
Autor: Marcel

Hallo,

> Gesucht ist die Stelle x im Intervall [ 4 [mm]\pi[/mm] ;4,5 [mm]\pi[/mm]
> ],für die glt :
>  sin x =0,6.
>  Tagchen,
>  
> also mir fehlt der Ansatz,wie ich dass machen muss!
>  Würde mich auf Eure HIlfe freuen.

zunächst mal ein wenig zur "Geometrie":
Es gilt [mm] $\sin^2(x)+\cos^2(x)=1$, [/mm] d.h. [mm] $0,6^2+\cos^2(x)=1$. [/mm] Wenn man also ein rechtwinkliges Dreieck mit einer Seitenlänge $0,6$ hat und die Hypothenuse die Länge $1$, dann hat die andere Seite die Länge [mm] $\sqrt{1-0,36}=0,8$. [/mm]

Mit anderen Worten:
Zeichne mal ein Dreieck mit Eckpunkten $A,B,C$ und sei wie üblich $c$ die Seite gegeben durch die Punkte $A$ und $B$, $a$ die gegeben durch $B$, $C$ und $b$ gegeben durch die Punkte $A$ und $C$.
Dabei soll $c$ dieLänge $1$ haben, die Seite $a$ habe Länge $0,6$ und $b$ habe Länge $0,8$. Dieses Dreieck ist rechtwinklig mit Hypothenuse $c$, und es gilt, dass der Winkel an $A$, nennen wir ihn wie üblich [mm] $\alpha$, [/mm] erfüllt:
[mm] $\sin(\alpha)=\frac{|\overline{BC}|}{|\overline{AB}|}=\frac{0,6}{1}=0,6$ [/mm]

Ob sich dieser Winkel [mm] $\alpha$ [/mm] "schön" angeben läßt, also in "konkreter" Abhängigkeit von [mm] $\pi$, [/mm] könnte man versuchen, sich geometrisch zu überlegen; ich erspare es mir an dieser Stelle. Jedenfalls ist klar:
[mm] $\sin(x)=\frac{3}{5}$ [/mm] hat genau eine Lösung im Intervall [mm] $\left[0, \frac{\pi}{2} \right]$, [/mm] diese nennen wir [mm] $x_0$, [/mm] also [mm] $x_0:=\arcsin(0,6)$. [/mm] Der Taschenrechner liefert dafür:
[mm] $\arcsin(0,6) \approx [/mm] 0,644$, wobei man nicht vergessen sollte, den TR auf RAD zu stellen.

(Übrigens gibt es eine weitere Lösung im Intervall [mm] $\left[\frac{\pi}{2},\pi\right]$, [/mm] das sollte man im Auge behalten, wenn man oben z.B. nach der Lösung im Intervall [mm] $\left[4,5 \pi, 5\pi\right]$ [/mm] fragen würde. Generell sollte man bei derartigen Aufgaben halt erstmal "alle" Lösungen im Intervall [mm] $[0,2\pi]$ [/mm] im Auge haben!)

Weil der [mm] $\sin(.)$, [/mm] auf [mm] $\IR$ [/mm] definiert, die (kleinste) Periode [mm] $2\pi$ [/mm] hat, gilt für jedes $x [mm] \in \IR$ [/mm] und jedes $k [mm] \in \IZ$: [/mm]
[mm] $sin(x+k*2\pi)=\sin(x)$ [/mm]

Demnach gibt es auch in dem Intervall [mm] $\left[4\pi, \frac{9}{2}\pi\right]=\left[0+2*(2\pi), \frac{\pi}{2}+2*(2\pi)\right]$ [/mm] genau ein $x$ mit [mm] $\sin(x)=0,6$. [/mm]

Im Intervall [mm] $\left[0,\frac{\pi}{2}\right]$ [/mm] hatten wir [mm] $x_0=\arcsin(0,6) \approx [/mm] 0,644$.

Wir setzen dann [mm] $x:=x_0+2*(2\pi) \in \left[4\pi, \frac{9}{2}\pi\right]$ [/mm] und behaupten, dass das die gesuchte Lösung ist.
Denn Du wirst sicherlich leicht einsehen:
[mm] $x_0=\arcsin(0,6) \in \left[0, \frac{\pi}{2}\right] \Rightarrow [/mm] x [mm] \in \left[4\pi, \frac{9}{2}\pi\right]$ [/mm] und [mm] $\sin(x)=\sin(x_0+2*(2\pi)) \Rightarrow \sin(x)=\sin(x_0)=0,6$. [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]