matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungInterpretation 2.Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Interpretation 2.Ableitung
Interpretation 2.Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Interpretation 2.Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:01 Mo 14.04.2014
Autor: rubi

Hallo zusammen,

ich habe eine allgemeine Frage zur 2.Ableitungsfunktion am Beispiel von
f(x) = [mm] x^3 -3x^2 [/mm] + 4.
Es gilt ja f''(x) = 6x - 6.
Ich weiß weiterhin, dass das Vorzeichen von f''(x) mir sagt, ob das Schaubild von f links- oder rechtsgekrümmt ist.
Folgendes ist mir jedoch unklar:
f''(2) = 6 > 0, also linksgekrümmt.
f''(3) = 12 > 0, also auch linksgekrümmt.
Bisher war ich der Meinung, dass je größer das Ergebnis ist, desto "krümmer" ist das Schaubild, das heißt, wenn ich das Schaubild als Straße interpretiere, dass ich umso mehr das Lenkrad einschlagen muss.
Wenn ich mir jedoch das Schaubild bei x = 2 und x= 3 anschaue, kommt es mir so vor, als ob man beim Tiefpunkt bei x = 2 das Lenkrad deutlich mehr einschlagen muss als an der Stelle x = 3. Aber es ist f''(3) > f''(2).

Wo liegt mein Gedankenfehler ?

Danke für Eure Antworten
Viele Grüße
Rubi

Ich habe die Frage auf keinem anderen Forum gestellt.

        
Bezug
Interpretation 2.Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:10 Mo 14.04.2014
Autor: leduart

Hallo
Die Stärke der Krümmung wir nicht direkt durch die Grüße der A2 ten Ableitung bestimmt.
das kannst du schon an der Parabel sehen, f(x) [mm] =x^2; [/mm]  f''(x)=2 also konstant.
wenn es dich interessiert die  Krümmung k  an der Stelle x ist
[mm] k(x)=\bruch{f''(x)}{(1+f'(x)^2)^{3/2}} [/mm]
da f' im Max und Min 0 ist ist da der Nenner am kleinsten, die Krümmung also besonders groß, wie du beobachtet hast.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]