matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationInterpolationsfehler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Interpolation und Approximation" - Interpolationsfehler
Interpolationsfehler < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Interpolationsfehler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 So 03.10.2004
Autor: regine

Hallo,

[mm] $p_n(x)$ [/mm] sei ein Polynom vom Grade $n$, welches die Funktion $f$ in den Punkten [mm] $(x_j, f(x_j)), [/mm] j=0,1,...,n$ interpoliere.

Die Punkte seien wie folgt verteilt: $a  [mm] \le x_0 [/mm] < [mm] x_1 [/mm] < ... < [mm] x_n \le [/mm] b$.

Man sucht nun den Interpolationsfehler zwischen den Stützstellen, sprich $ [mm] \varepsilon(z)=f(z)-p_n(z)$ [/mm] für ein $z [mm] \in [/mm] [a,b], z  [mm] \not= x_i, [/mm] i=0,1,...,n$.

Man setzt nun [mm] $z:=x_{n+1}$ [/mm] und versteht darunter eine zusätzliche, beliebige, aber feste Stützstelle.

Man hat dann ein Polynom [mm] $p_{n+1}$ [/mm] $n+1$-ten Grades, welches $f$ in den Daten [mm] $x_0,x_1,...,x_n,z$ [/mm] interpoliere.

Warum ist dann nun [mm] $f(z)=p_{n+1}(z)$? [/mm]

Mann kann nun so weitergehen:

$ [mm] \varepsilon(z)=f(z)-p_n(z)=p_{n+1}(z)-p_n(z)= \summe_{j=0}^{n+1}c_j \prod_{v=0}^{j-1} (z-x_v) [/mm] - [mm] \summe_{j=0}^{n}c_j \prod_{v=0}^{j-1} (z-x_v)=c_{n+1} \prod_{v=0}^{n} (z-x_v)$ $=f[x_0,x_1,...,x_n,z] \prod_{v=0}^{n} (z-x_v)$. [/mm]

Bin ich noch richtig? :-)

Danke und viele Grüße,
Regine.

        
Bezug
Interpolationsfehler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:13 Mo 04.10.2004
Autor: Marc

Hallo Regine,

> [mm]p_n(x)[/mm] sei ein Polynom vom Grade [mm]n[/mm], welches die Funktion [mm]f[/mm]
> in den Punkten [mm](x_j, f(x_j)), j=0,1,...,n[/mm] interpoliere.
>  
> Die Punkte seien wie folgt verteilt: [mm]a \le x_0 < x_1 < ... < x_n \le b[/mm].
>  
>
> Man sucht nun den Interpolationsfehler zwischen den
> Stützstellen, sprich [mm]\varepsilon(z)=f(z)-p_n(z)[/mm] für ein [mm]z \in [a,b], z \not= x_i, i=0,1,...,n[/mm].
>  
>
> Man setzt nun [mm]z:=x_{n+1}[/mm] und versteht darunter eine
> zusätzliche, beliebige, aber feste Stützstelle.
>  
> Man hat dann ein Polynom [mm]p_{n+1}[/mm] [mm]n+1[/mm]-ten Grades, welches [mm]f[/mm]
> in den Daten [mm]x_0,x_1,...,x_n,z[/mm] interpoliere.
>  
> Warum ist dann nun [mm]f(z)=p_{n+1}(z)[/mm]?

Wenn [mm] p_{n+1} [/mm] ein Polynom ist, das die Daten [mm] (x_0,f(x_0)),\ldots,(x_n,f(x_n)),(z,f(z)) [/mm] interpoliert, dann ist das doch klar.
  

> Mann kann nun so weitergehen:
>  
> [mm]\varepsilon(z)=f(z)-p_n(z)=p_{n+1}(z)-p_n(z)= \summe_{j=0}^{n+1}c_j \prod_{v=0}^{j-1} (z-x_v) - \summe_{j=0}^{n}c_j \prod_{v=0}^{j-1} (z-x_v)=c_{n+1} \prod_{v=0}^{n} (z-x_v)[/mm]

Kann man denn davon ausgehen, dass die Koeffizienten von [mm] p_n [/mm] und [mm] p_{n+1} [/mm] identisch sind?

Woher kommt denn die Darstellung [mm] $p_{n+1}(z)=\summe_{j=0}^{n+1}c_j \prod_{v=0}^{j-1} (z-x_v)$? [/mm] (Sie ist möglich, ich kenne sie einfach nur nicht, was aber nichts heißt; wahrscheinlich ist es eine sehr bekannte Darstellung... :-))

> [mm]=f[x_0,x_1,...,x_n,z] \prod_{v=0}^{n} (z-x_v)[/mm].
>  
> Bin ich noch richtig? :-)

Keine Ahnung, ich lasse die Frage mal offen, da ich mich nicht damit auskenne bzw. mir zuviel unklar ist.

Viele Grüße,
Marc

Bezug
                
Bezug
Interpolationsfehler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:38 Mo 04.10.2004
Autor: regine

Hallo Marc,

> Hallo Regine,
>  
> > [mm]p_n(x)[/mm] sei ein Polynom vom Grade [mm]n[/mm], welches die Funktion [mm]f[/mm]
> > in den Punkten [mm](x_j, f(x_j)), j=0,1,...,n[/mm] interpoliere.
>  >  
> > Die Punkte seien wie folgt verteilt: [mm]a \le x_0 < x_1 < ... < x_n \le b[/mm].
> >
> > Man sucht nun den Interpolationsfehler zwischen den
> > Stützstellen, sprich [mm]\varepsilon(z)=f(z)-p_n(z)[/mm] für ein [mm]z \in [a,b], z \not= x_i, i=0,1,...,n[/mm].
> >
> > Man setzt nun [mm]z:=x_{n+1}[/mm] und versteht darunter eine
> > zusätzliche, beliebige, aber feste Stützstelle.
>  >  
> > Man hat dann ein Polynom [mm]p_{n+1}[/mm] [mm]n+1[/mm]-ten Grades, welches [mm]f[/mm]
> > in den Daten [mm]x_0,x_1,...,x_n,z[/mm] interpoliere.
>  >  
> > Warum ist dann nun [mm]f(z)=p_{n+1}(z)[/mm]?

Ja klar... Ich hatte mir selber die Antwort gegeben, ohne es zu merken. Das Thema ist mir einfach noch zu fern...

>  
> Wenn [mm]p_{n+1}[/mm] ein Polynom ist, das die Daten [mm](x_0,f(x_0)),\ldots,(x_n,f(x_n)),(z,f(z))[/mm] interpoliert,
> dann ist das doch klar.
>    
> > Mann kann nun so weitergehen:
>  >  
> > [mm]\varepsilon(z)=f(z)-p_n(z)=p_{n+1}(z)-p_n(z)= \summe_{j=0}^{n+1}c_j \prod_{v=0}^{j-1} (z-x_v) - \summe_{j=0}^{n}c_j \prod_{v=0}^{j-1} (z-x_v)=c_{n+1} \prod_{v=0}^{n} (z-x_v)[/mm]
>
>
> Kann man denn davon ausgehen, dass die Koeffizienten von [mm]p_n[/mm] und [mm]p_{n+1}[/mm] identisch sind?

Ich hoffe es...

>  
> Woher kommt denn die Darstellung [mm]p_{n+1}(z)=\summe_{j=0}^{n+1}c_j \prod_{v=0}^{j-1} (z-x_v)[/mm]?
> (Sie ist möglich, ich kenne sie einfach nur nicht, was aber nichts heißt; wahrscheinlich ist es eine sehr bekannte
> Darstellung... :-))

Das ist die Newton-Darstellung eines Interpolationspolynoms.

>  
> > [mm]=f[x_0,x_1,...,x_n,z] \prod_{v=0}^{n} (z-x_v)[/mm].
>  >  
> > Bin ich noch richtig? :-)
>  
> Keine Ahnung, ich lasse die Frage mal offen, da ich mich
> nicht damit auskenne bzw. mir zuviel unklar ist.
>  
> Viele Grüße,
>  Marc
>  

Soweit danke,
Regine.

:-)

Bezug
        
Bezug
Interpolationsfehler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:31 Mi 06.10.2004
Autor: Stefan

Liebe Regine!

Ich habe mir den entsprechenden Paragraphen jetzt mal im "Hämmerlin-Hoffmann" ("Numerische Mathematik", Springer-Verlag) durchgelesen.

Du hast alles richtig gemacht. :-)

Liebe Grüße
Stefan

Bezug
                
Bezug
Interpolationsfehler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:50 Do 07.10.2004
Autor: regine

Hallo,

ist das Buch, welches Du nennst, gut zur Erarbeitung numerischer Zusammenhänge zu gebrauchen?

Danke und viele Grüße,
Regine.

Bezug
                        
Bezug
Interpolationsfehler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:12 Do 07.10.2004
Autor: Stefan

Liebe Regine!

Ich finde es gut, ja. :-) Es ist mathematisch relativ exakt (für ein Numerik-Buch nicht selbstverständlich) und schön zu lesen. Allerdings werden echte Numeriker sicherlich sagen, dass es zu wenig in die Tiefe geht und Algorithmen, "Rechenzeit"-Überlegungen etc. etwas vernachlässigt, aber darauf kann ich zumindestens verzichten, mich interessiert nur die Mathematik hinter der Numerik. ;-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]