Interpolation < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:18 Fr 02.12.2005 | Autor: | Pollux |
Hi,
Ein Intervall [a,b] werde durch die Punkte [mm] x_i [/mm] = a + i/n * (b-a) mit i=0,...,n unterteilt. Weiterhin sei [mm] t_n [/mm] ein über allen Intervallen
von [mm] x_{i} [/mm] bis [mm] x_{i+1} [/mm] definierter Strecken-zug, der die stetige Fkt. g über [a,b] in allen [mm] x_i [/mm] interpoliert
Zu zeigen:
[mm] t_n [/mm] konvergiert gleichmässig gegen g für n gegen unendlich!
Mein erstes Problem ist schonmal, wie sich [mm] t_n [/mm] für n gegen unendlich überhaupt verhält. Er interpoliert sicherlich [mm] t_n [/mm] , und da die Anzahl der Punkte zunimmt, muss er wohl auch gegen g konvergieren. Aber wie zeigt man das?
mfg
|
|
|
|
Hallo Pollux,
Zunächst müßtest Du Dir klar machen was gleichmäßige Konvergenz ist. Konvergenz bedeutet ja Konvergenz bezgl. einer Norm welche sollst/willst Du hier benutzen?
viele Grüße
mathemaduenn
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:46 Sa 03.12.2005 | Autor: | Pollux |
Hallo mathemaduenn,
was glm Konvergenz ist, ist mir schon klar. Man zeigt einfach, dass
[mm] \limes_{n\rightarrow\infty} \parallel t_n [/mm] - [mm] g\parallel [/mm] = 0 gilt.
So weit, so gut...
Nur weiß ich nicht, wie man das konkret in diesem Fall nachweisen soll! Falls der Strecken-zug die Interpolationspunkte verbindet, kann ich einen Satz anwenden, aus der die glm. Konv. folgt. Aber wie zeig ich das in den anderen Fällen?
mfg
|
|
|
|
|
Hallo Pollux,
Streckenzug soll doch heißen das [mm] t_n [/mm] zwischen den Interpolationsstellen ( [mm] t_n(x_i)=g(x_i) [/mm] ) eine Gerade ist oder etwa nicht??
ICh versteh Dein Problem mit der Aufgabe irgendwie nicht da mußt Du wohl noch etwas ausführlicher werden.
viele Grüße
mathemaduenn
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:44 So 04.12.2005 | Autor: | Pollux |
Hi,
ja das hab ich mir anfangs auch gedacht. Es scheint so, dass die Interpolationspunkte einfach durch einen Streckenzug verbunden werden. Hier kann ich dann einfach einen Satz aus der Vorlesung anwenden:
Der Streckenzug ist ja dann nichts anderes als ein linearer Spline und der konv. glm. falls die Anzahl der Interpolationsstellen erhöht wird!
Nun ist in der Aufgabe, wenn du sie dir nochmal durchliest, nicht erwähnt, dass die Interpolationspunkte durch einen linearen spline verbunden werden. Es steht nur da, dass über jedem Teil(!)-Intervall ein streckenzug liegt, an dessen Enden er mit der Funktion g übereinstimmt (soweit meine Interpretation). Dies ist eben dann kein linearer spline (bzgl. g) mehr. Vermutlich soll man, den Strecken-
zug über jedem Intervall aufteilen, und hieraus glm. Konv. abzuleiten.
mfg
|
|
|
|
|
Hallo Pollux,
Vom Prinzip reicht für die Konvergenz neben der Interpolationsbedingung die Stetigkeit von [mm] t_n [/mm] aus. Den stetige Funktionen auf einem kompakten Intervall sind ja glm. stetig.
Zusätzlich hast Du ja:
[mm]|t_n(x)-g(x)|=|t_n(x)-t_n(x_i)+g(x_i)-g(x)|\le |t_n(x)-t_n(x_i)|+|g(x_i)-g(x)|[/mm]
Wenn jetzt [mm] x_i [/mm] die zu x nächstgelegene Interpolationsstelle ist kanst Du das entsprechende [mm] n_0 [/mm] aus der glm. Stetigkeit von g und [mm] t_n [/mm] bestimmen.
Alles klar?
viele Grüße
mathemaduenn
|
|
|
|