matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikInterferenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "HochschulPhysik" - Interferenz
Interferenz < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Interferenz: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:30 Do 14.06.2012
Autor: Ana-Lena

Aufgabe
Wir betrachten die Interferenz zweier Materiewellen, die unter einem Winkel von 90°.
a) Berechnen Sie die Intensitätsverteilung auf dem Interferenzschirm.
b) Was passiert, wenn die beiden Wellen Teilchen unterschiedlicher Energie repräsentieren.
c) Schätzen Sie die maximale Energiedi fferenz ab, welche die Materiewellen haben dürfen, um ein scharfes Interferenzbild zu erhalten, wenn man den detektierenden Film 1/2 s belichtet.

Wie bekomme ich denn b) und c) ?

Bei a) würde ich das so machen:
[mm] \Psi [/mm] = [mm] \Psi_1 [/mm] + [mm] \Psi_2 [/mm] = [mm] e^{i(k_1 \cdot r - \omega_1 t)}+e^{i(k_2 \cdot r - \omega_2 t)} \\ [/mm]
I = [mm] \Psi \cdot \Psi^* [/mm] = [mm] (e^{i(k_1 \cdot r - \omega_1 t)}+e^{i(k_2 \cdot r - \omega_2 t)})\cdot (e^{-i(k_1 \cdot r - \omega_1 t)}+e^{-i(k_2 \cdot r - \omega_2 t)}) \\ [/mm]
= [mm] e^{i(k_1 \cdot r - \omega_1 t)} \cdot e^{-i(k_1 \cdot r - \omega_1 t)} +e^{i(k_1 \cdot r - \omega_1 t)} \cdot e^{-i(k_2 \cdot r - \omega_2 t)} +e^{i(k_2 \cdot r - \omega_2 t)} \cdot e^{-i(k_1 \cdot r - \omega_1 t)} +e^{i(k_2 \cdot r - \omega_2 t)} \cdot e^{-i(k_2 \cdot r - \omega_2 t)} \\ [/mm]
= 1 + [mm] e^{i(k_1 \cdot r - \omega_1 t)-i(k_2 \cdot r - \omega_2 t)} [/mm] + [mm] e^{i(k_2 \cdot r - \omega_2 t)-i(k_1 \cdot r - \omega_1 t)} [/mm] +1 [mm] \\ [/mm]
= 2 + [mm] e^{i \omega_2 t- i\omega_1 t-i k_2 \cdot r +i k_1 \cdot r} [/mm] + [mm] e^{ - i \omega_2 t +i \omega_1 t+i k_2 \cdot r- ik_1 \cdot r } \\ [/mm]
= 2 + [mm] e^{i(\overbrace{(\omega_2 - \omega_1)}^{\Delta \omega}\cdot t+(k_1 -k_2) \cdot r)} [/mm] + [mm] e^{i((\omega_1 - \omega_2) \cdot t+\overbrace{(k_2 - k_1)}^{\Delta k} \cdot r) } \\ [/mm]
= 2 + [mm] e^{i((\Delta \omega)\cdot t -\Delta_k \cdot r)} [/mm] + [mm] e^{i(-(\Delta \omega) \cdot t+ (\Delta k) \cdot r) } \\ [/mm]
= 2 + [mm] e^{i((\Delta \omega)\cdot t -(\Delta k) \cdot r)} [/mm] + [mm] e^{-i\overbrace{((\Delta \omega) \cdot t- (\Delta k) \cdot r)}^{\phi} } \\ [/mm]
= 2 + [mm] e^{i\cdot \phi} [/mm] + [mm] e^{-i \cdot \phi} \\ [/mm]
= 2 + [mm] (\cos(\phi) +i\sin(\Phi)) [/mm] + [mm] (\cos(\phi) -i\sin(\Phi)) \\ [/mm]
= 2+ [mm] 2\cdot \cos(\phi) \\ [/mm]
[mm] \Leftrightarrow [/mm] = 2+ [mm] 2\cdot \cos((\Delta \omega) \cdot [/mm] t- [mm] (\Delta [/mm] k) [mm] \cdot [/mm] r) = I

Kann man das so schreiben? Ist das richtig?

Liebe Grüße,
Ana-Lena

        
Bezug
Interferenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Do 14.06.2012
Autor: leduart

Hallo
ich seh nicht, wo du die 90° der 2 wellen eingebaut hast?
gruss leduart

Bezug
                
Bezug
Interferenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Do 14.06.2012
Autor: Ana-Lena

Oh ja,

wie mache ich das dann bei Wellen?

Danke, leduart!

LG
Ana-Lena

Bezug
                        
Bezug
Interferenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Do 14.06.2012
Autor: leduart

Hallo
die eine läuft in x, die andere in y Richtung, der Schirm sollte dazu 45° stehen, zeichne mal ein paar Wellenfronten, die sich kreuzen!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]