matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIntegritätsring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Integritätsring
Integritätsring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integritätsring: formale Ableitung
Status: (Frage) beantwortet Status 
Datum: 19:25 So 26.04.2009
Autor: Judyy

Aufgabe
Sei R ein Integritätsring und sei [mm] f=\summe_{i=0}^{n}a_{i}t^{i} \in [/mm] R[t].
Die formale Ableitung sei definiert als das Polynom [mm] f'=\summe_{k=1}^{n}ka_{k}t^{k-1} [/mm] = [mm] a_{1}+2a_{2}t+\ldots+na_{n}t^{n-1} [/mm]

Beweisen Sie die folgenden Aussagen für alle f, g [mm] \inR[/mm] [t] und [mm] \lambda \inR [/mm] :

(a) [mm] (\lambda [/mm] f)' = [mm] \lambda [/mm] f' und (f+g)' = f' + g'
(b) (fg)' = f'g + fg'
(c) [mm] (g^{n})' [/mm] = [mm] ng^{n-1}g' [/mm] für alle n [mm] \in\IN [/mm]

Mein Tutor meinte, ich müsse irgendwelche Axiome nachrechnen, leider weiß ich nicht welche. Kann mir da jemand weiterhelfen?
Zu (a) habe ich mir überlegt, die Definitonen einzusetzen. Komme aber nicht weiter.
Muss mein g wie die Summe von f gewählt sein, oder ist g wie [mm] \lambda [/mm] einfach ein Element aus R?
Generelle Lösungsansätze?
Schonmal Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integritätsring: Antwort
Status: (Antwort) fertig Status 
Datum: 05:11 Di 28.04.2009
Autor: felixf

Hallo!

> Sei R ein Integritätsring und sei
> [mm]f=\summe_{i=0}^{n}a_{i}t^{i} \in[/mm] R[t].
>  Die formale Ableitung sei definiert als das Polynom [mm]f'=\summe_{k=1}^{n}ka_{k}t^{k-1}[/mm] = [mm]a_{1}+2a_{2}t+\ldots+na_{n}t^{n-1}[/mm]
>  
> Beweisen Sie die folgenden Aussagen für alle f, g [mm]\inR[/mm] [t]und [mm]\lambda \inR[/mm] :
>  
> (a) [mm](\lambda[/mm] f)' = [mm]\lambda[/mm] f' und (f+g)' = f' + g'
>  (b) (fg)' = f'g + fg'
>  (c) [mm](g^{n})'[/mm] = [mm]ng^{n-1}g'[/mm] für alle n [mm]\in\IN[/mm]
>
>  Mein Tutor meinte, ich müsse irgendwelche Axiome nachrechnen, leider weiß ich nicht welche. Kann mir da jemand weiterhelfen?

Du musst nicht ``irgendwelche Axiome'' nachrechnen, sondern die oben genannten Bedingungen (a), (b) und (c).

>  Zu (a) habe ich mir überlegt, die Definitonen einzusetzen. Komme aber nicht weiter.

Schreib doch mal auf was genau du da schon hast.

Mal ein Beispiel:

Du hast $f = [mm] \sum_{i=0}^n a_i x^i$ [/mm] mit [mm] $a_i \in [/mm] R$, und [mm] $\lambda \in [/mm] R$. Dann ist [mm] $(\lambda [/mm] f)' = [mm] \left( \sum_{i=0}^n (\lambda a_i) x^i \right)' [/mm] = [mm] \sum_{i=1}^n [/mm] i [mm] (\lambda_i a_i) x^{i - 1} [/mm] = [mm] \lambda \sum_{i=1}^n [/mm] i [mm] a_i x^{i-1} [/mm] = [mm] \lambda [/mm] f'$.

> Muss mein g wie die Summe von f gewählt sein, oder ist g wie [mm]\lambda[/mm] einfach ein Element aus R?

Ja, $g$ ist ein Polynom so wie $f$. Also etwa $g = [mm] \sum_{j=0}^m b_j x^j$ [/mm] mit [mm] $b_j \in [/mm] R$. (Du kannst uebrigens ohne Einschraenkung $n = m$ waehlen.)

>  Generelle Lösungsansätze?

Mach bei (c) eine Induktion und verwende (b).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]