Integrieren mit PartIntegratio < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | [mm] \int_{a}^{b}{f(x) dx} \
fuer \ f(x)= x^2*(2x-5)^4[/mm]
|
<br>Der Lehrerhinweis lautete: Die Stammfunktion kann mit 2maliger Partiellen Integration erstellt werden.
Aus meiner Sicht muss aber die Substitution angewandt werden.
Mein Lösungsversuch:
z=2x-5 z'= 2 dz/dx = 2 dx=dz/2
Integral [mm] x^2 z^4 [/mm] dx
x ersetze ich durch z: z=2x-5 x= z/2+5/2
0,5 Integral (z/2 [mm] +5/2)^2 z^4 [/mm] dz
Ist dieser Lösungsansatz zielführend?
Danke für Ihre Antwort
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:04 Mo 04.04.2016 | Autor: | fred97 |
> <br>[mm] \int_{a}^{b}{f(x) dx}
fuer f(x)= x^2(2x-5)^4[/mm]
>
>
> <br>Der Lehrerhinweis lautete: Die Stammfunktion kann mit
> 2maliger Partiellen Integration erstellt werden.
> Aus meiner Sicht muss aber die Substitution angewandt
> werden.
Wieso "muss" ????
>
> Mein Lösungsversuch:
>
> z=2x-5 z'= 2 dz/dx = 2 dx=dz/2
> Integral [mm]x^2 z^4[/mm] dx
> x ersetze ich durch z: z=2x-5 x= z/2+5/2
> 0,5 Integral (z/2 [mm]+5/2)^2 z^4[/mm] dz
>
> Ist dieser Lösungsansatz zielführend?
Na ja, das Integral, welches Du nun bekommen hast, ist doch komplizierter als das ursprüngliche ......
FRED
>
> Danke für Ihre Antwort
|
|
|
|
|
Hallo Fred!
Über Ihre Antwort bin ich sehr enttäuscht: keine Spur von Hilfe Ihrerseits, die Kürze Ihrer Antwort grenzt an Arroganz!!!
Schade, war bisher mit dem "matheraum" immer sehr zufrieden
Mit freundlichen Grüßen
Wolfgangmax
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:01 Di 26.04.2016 | Autor: | fred97 |
> Hallo Fred!
>
> Über Ihre Antwort bin ich sehr enttäuscht: keine Spur von
> Hilfe Ihrerseits, die Kürze Ihrer Antwort grenzt an
> Arroganz!!!
Gehts noch ???
1. dem Lehrerhinweis bist Du nicht gefolgt, sondern warst der Meinung, dass man substituieren muss.
2. ich hab Dich darauf hingewiesen, dass von "müssen" nicht die Rede ist und das Deine Vorgehensweise nicht zielführend ist, denn aus der Aufgabe
"integriere das Produkt p(x)q(x), wobei p ein Polynom vom Grad 2 und q ein Polynom vom Grad 4 ist"
machst Du:
"integriere das Produkt r(x)s(x), wobei r ein Polynom vom Grad 2 und s ein Polynom vom Grad 4 ist".
Was soll damit gewonnen sein ?
Fazit: der arrogante Fred hat dem lieben Wolfgang gesagt, dass seine Vorgehensweise nicht zielführend ist. Fred, der Arsch, sagt dem tollen Wolfgang damit: folge dem Lehrerhinweis (und hat dem Wolfi damit keine Spur geholfen). Man glaubt es nicht !
Ich habe fertig
Fred
>
> Schade, war bisher mit dem "matheraum" immer sehr
> zufrieden
>
> Mit freundlichen Grüßen
> Wolfgangmax
|
|
|
|
|
Hallo,
Wie Fred (dessen Arbeit hier im Forum wirklich höchst zu schätzen ist) bereits gesagt hat , ist es sinnfrei, dass du substituierst ... du kannst es tun und nochmals tun - bringen tut es nix.
Verfahre wie vorgeschlagen (oder du machst es ganz primitiv und multiplizierst einfach [mm] $x^2(2x-5)^4$ [/mm] aus - denn dann hast du kein Produkt mehr und musst eben nicht partiell integrieren)
Tust du dies nicht, so hast du ein Integral der gestalt [mm] $\int_{a}^{b}f(x)g(x)dx$ [/mm] mit [mm] f(x)=x^2 [/mm] und [mm] g(x)=(2x-5)^4
[/mm]
Zur Erinnerung : es gilt :
[mm] $\int_{a}^{b}f'(x)g(x)dx [/mm] = [mm] [f(x)g(x)]_{a}^{b}$ [/mm] - [mm] \int_{a}^{b}f(x)g'(x)dx$
[/mm]
Lg
|
|
|
|