Integrieren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:08 Mo 24.01.2011 | Autor: | Geddon |
Hi,
ich hab noch weiter Aufgaben.
[mm] \integral_{}^{}{\bruch{sin(x)}{e^{x}} dx}
[/mm]
= [mm] \integral_{}^{}{sin(x)}*{e^{-x} dx}
[/mm]
u = sin(x)
v' = [mm] e^{-x}
[/mm]
[mm] \integral_{}^{}{sin(x)}*{e^{-x} dx} [/mm] = [mm] sin(x)*(-e^{-x}) [/mm] - [mm] \integral_{}^{}{cos(x)*(-e^{-x}) dx}
[/mm]
[mm] sin(x)*(-e^{-x}) [/mm] = [mm] \integral_{}^{}{sin(x)}*{e^{-x} dx} [/mm] + [mm] \integral_{}^{}{cos(x)*(-e^{-x}) dx}
[/mm]
Kann ich hier was zusammenfassen?
Gruß
Geddon
|
|
|
|
Hallo
[mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=-sin(x)*e^{-x}+\integral_{}^{}{cos(x)*e^{-x}dx} [/mm] ist korrekt
jetzt mache erneut partielle Integration mit [mm] \integral_{}^{}{cos(x)*e^{-x}dx} [/mm] dann den gleichen "Trick", wie in deiner anderen Aufgabe
Steffi
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:59 Mo 24.01.2011 | Autor: | Geddon |
Hi,
wie kommst du denn auf
$ [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+\integral_{}^{}{cos(x)\cdot{}e^{-x}dx} [/mm] $ ?
oder ist das gleich mit meiner Lösung?
$ [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx} [/mm] $ = $ [mm] sin(x)\cdot{}(-e^{-x}) [/mm] $ - $ [mm] \integral_{}^{}{cos(x)\cdot{}(-e^{-x}) dx} [/mm] $
------
[mm] \integral_{}^{}{cos(x)\cdot{}e^{-x}dx} [/mm] = -cos(x) [mm] e^{-x} [/mm] - [mm] \integral_{}^{}{-sin(x)*(-e^{-x})dx}
[/mm]
-cos(x) [mm] e^{-x} [/mm] = [mm] \integral_{}^{}{cos(x)\cdot{}e^{-x}dx} [/mm] + [mm] \integral_{}^{}{-sin(x)*(-e^{-x})dx}
[/mm]
das bringt mich auch nicht weiter
Gruß
Geddon
|
|
|
|
|
Hallo, deine und meine Lösung sind gleich, im 1. Summanden habe ich das minus vorgezogen, im 2. Summanden habe ich das minus aus dem Integral gezogen,
[mm] \integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+\integral_{}^{}{cos(x)*e^{-x}dx}
[/mm]
jetzt
u=cos(x)
u'=-sin(x)
[mm] v'=e^{-x}
[/mm]
[mm] v=-e^{-x}
[/mm]
[mm] \integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+[-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}]
[/mm]
[mm] \integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}
[/mm]
jetzt addiere auf beiden Seiten der Gleichung [mm] \integral_{}^{}{sin(x)}*{e^{-x} dx}, [/mm] teile dann durch 2
Steffi
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:15 Mo 24.01.2011 | Autor: | Geddon |
Hi,
> Hallo, deine und meine Lösung sind gleich, im 1. Summanden
> habe ich das minus vorgezogen, im 2. Summanden habe ich das
> minus aus dem Integral gezogen,
>
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+\integral_{}^{}{cos(x)*e^{-x}dx}[/mm]
>
> jetzt
>
> u=cos(x)
> u'=-sin(x)
> [mm]v'=e^{-x}[/mm]
> [mm]v=-e^{-x}[/mm]
>
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+[-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}][/mm]
Was hast du hier gemacht?
Sieht so aus als hättest du $- [mm] \integral_{}^{}{-sin(x)\cdot{}(-e^{-x})dx} [/mm] $ ersetzt.. nur mit was und woher?
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}[/mm]
>
> jetzt addiere auf beiden Seiten der Gleichung
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx},[/mm] teile dann durch 2
>
> Steffi
Gruß
Geddon
|
|
|
|
|
Hallo Geddon,
> Hi,
>
> > Hallo, deine und meine Lösung sind gleich, im 1. Summanden
> > habe ich das minus vorgezogen, im 2. Summanden habe ich das
> > minus aus dem Integral gezogen,
> >
> > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+\integral_{}^{}{cos(x)*e^{-x}dx}[/mm]
>
> >
> > jetzt
> >
> > u=cos(x)
> > u'=-sin(x)
> > [mm]v'=e^{-x}[/mm]
> > [mm]v=-e^{-x}[/mm]
> >
> > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+[-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}][/mm]
>
> Was hast du hier gemacht?
> Sieht so aus als hättest du [mm]- \integral_{}^{}{-sin(x)\cdot{}(-e^{-x})dx}[/mm]
> ersetzt.. nur mit was und woher?
Was meinst du mit ersetzt?
Steffi hat lediglich die beiden "-" unter dem Integral zu einem "+" zusammengefasst ...
Das "-" vor dem Integral bleibt.
>
> > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}[/mm]
>
> >
> > jetzt addiere auf beiden Seiten der Gleichung
> > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx},[/mm] teile dann durch 2
> >
> > Steffi
>
>
>
> Gruß
> Geddon
LG
schachuzipus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:56 Mo 24.01.2011 | Autor: | Geddon |
Hi,
ich mein wenn ich bei
$ [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+\integral_{}^{}{cos(x)\cdot{}e^{-x}dx} [/mm] $
partiell inegriere komm ich auf
$ [mm] \integral_{}^{}{cos(x)\cdot{}e^{-x}dx} [/mm] $ = -cos(x) $ [mm] e^{-x} [/mm] $ - $ [mm] \integral_{}^{}{-sin(x)\cdot{}(-e^{-x})dx} [/mm] $
und Steffi auf
$ [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+[-cos(x)\cdot{}e^{-x}-\integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}] [/mm] $
sieht doch so aus als ob da was eingesetzt wurde
> Hallo Geddon,
>
>
> > Hi,
> >
> > > Hallo, deine und meine Lösung sind gleich, im 1. Summanden
> > > habe ich das minus vorgezogen, im 2. Summanden habe ich das
> > > minus aus dem Integral gezogen,
> > >
> > > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+\integral_{}^{}{cos(x)*e^{-x}dx}[/mm]
>
> >
> > >
> > > jetzt
> > >
> > > u=cos(x)
> > > u'=-sin(x)
> > > [mm]v'=e^{-x}[/mm]
> > > [mm]v=-e^{-x}[/mm]
> > >
> > > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+[-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}][/mm]
>
> >
> > Was hast du hier gemacht?
> > Sieht so aus als hättest du [mm]- \integral_{}^{}{-sin(x)\cdot{}(-e^{-x})dx}[/mm]
> > ersetzt.. nur mit was und woher?
>
> Was meinst du mit ersetzt?
>
> Steffi hat lediglich die beiden "-" unter dem Integral zu
> einem "+" zusammengefasst ...
>
> Das "-" vor dem Integral bleibt.
>
>
> >
> > > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}[/mm]
>
> >
> > >
> > > jetzt addiere auf beiden Seiten der Gleichung
> > > [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx},[/mm] teile dann durch 2
> > >
> > > Steffi
> >
> >
> >
> > Gruß
> > Geddon
>
> LG
>
> schachuzipus
>
|
|
|
|
|
Hallo nochmal,
> Hi,
>
> ich mein wenn ich bei
> [mm]\integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=\red{-sin(x)\cdot{}e^{-x}}+\blue{\integral_{}^{}{cos(x)\cdot{}e^{-x}dx}}[/mm]
> partiell inegriere komm ich auf
> [mm]\blue{\integral_{}^{}{cos(x)\cdot{}e^{-x}dx}}[/mm] = -cos(x) [mm]\blue{e^{-x}}[/mm] - [mm]\blue{\integral_{}^{}{-sin(x)\cdot{}(-e^{-x})dx}}[/mm]
Ja, für das hintere Integral, was ist mit dem Teil davor, also dem [mm]\red{-\sin(x)e^{-x}}[/mm] - das musst du doch mitschleppen
Du hast nur den blauen Teil übernommen ...
> und Steffi auf
> [mm]\integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+[-cos(x)\cdot{}e^{-x}-\integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}][/mm]
> sieht doch so aus als ob da was eingesetzt wurde
Nein, sie hat nur richtig abgeschrieben ...
>
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:14 Di 25.01.2011 | Autor: | Geddon |
Hi,
$ 2 [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=-sin(x)\cdot{}e^{-x}-cos(x)\cdot{}e^{-x} [/mm] $
$ [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=\bruch{-sin(x)}{2}\cdot{}e^{-x}\bruch{-cos(x)}{2}\cdot{}e^{-x} [/mm] $
$ [mm] \integral_{}^{}{\bruch{sin(x)}{e^{x}} dx} [/mm] = [mm] \bruch{-sin(x)}{2}\cdot{}e^{-x}\bruch{-cos(x)}{2}\cdot{}e^{-x} [/mm] $
das ist ja ganz schön viel arbeit :/
> Hallo, deine und meine Lösung sind gleich, im 1. Summanden
> habe ich das minus vorgezogen, im 2. Summanden habe ich das
> minus aus dem Integral gezogen,
>
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+\integral_{}^{}{cos(x)*e^{-x}dx}[/mm]
>
> jetzt
>
> u=cos(x)
> u'=-sin(x)
> [mm]v'=e^{-x}[/mm]
> [mm]v=-e^{-x}[/mm]
>
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}+[-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}][/mm]
>
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx}=-sin(x)\cdot{}e^{-x}-cos(x)*e^{-x}-\integral_{}^{}{sin(x)}*{e^{-x} dx}[/mm]
>
> jetzt addiere auf beiden Seiten der Gleichung
> [mm]\integral_{}^{}{sin(x)}*{e^{-x} dx},[/mm] teile dann durch 2
>
> Steffi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:33 Di 25.01.2011 | Autor: | Blech |
Hi,
$ 2 [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=-sin(x)\cdot{}e^{-x}-cos(x)\cdot{}e^{-x} [/mm] $
$ [mm] \integral_{}^{}{sin(x)}\cdot{}{e^{-x} dx}=\bruch{-sin(x)}{2}\cdot{}e^{-x}\bruch{-cos(x)}{2}\cdot{}e^{-x} [/mm] $
Hier hast Du ganz nonchalant aus einer Summe ein Produkt gemacht.
Hast Du schon mal darüber nachgedacht, Dir Nachhilfe (Buch oder real life) in 7. Klasse Mathe zu holen? Die partielle Integration kriegst Du hin, aber Du scheiterst dann an so Sachen wie
$a*(-b)=-a*b$,
$-1*(-1)=1$,
[mm] $(-a)-b\neq [/mm] (-a)*(-b)$, oder
[mm] $a=b+c\, [/mm] ;\ c=d\ [mm] \Rightarrow\ [/mm] a=b+d$.
Da sich das viel leichter lernt, als partielle Integration (oder Integration allgemein) ist es doch dämlich, wenn Du Dir vom Kopfrechnen das alles verhageln läßt. Um beim Französischen zu bleiben: Den subjonctif kannst Du perfekt, aber was pouvoir heißt, weißt Du nicht. =)
ciao
Stefan
|
|
|
|