matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegrieren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Integrieren
Integrieren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 Mo 24.01.2011
Autor: Geddon

Hallo,

ich soll [mm] \integral_{}^{}{x^3 * ln(x) dx} [/mm] integrieren.

Ich kenne nur partielle Integration und die Substitutionsregel.

Wie kann ich das lösen?
Mit partieller Integration komm ich auf:
v' = [mm] x^3 [/mm]
u = log(x)

= log(x) * [mm] 0,25x^{4} [/mm] - [mm] \integral_{}^{}{\bruch{1}{x}* 0,25x^{4} dx} [/mm]

Nur komm ich so nicht weiter..
wxMaxima rechnet mir log(x) * [mm] 0,25x^{4} [/mm] - [mm] \bruch{x^{4}}{16} [/mm] aber keine Ahnung wie man darauf kommen kann.

Gruß
Geddon

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integrieren: zusammenfassen
Status: (Antwort) fertig Status 
Datum: 14:27 Mo 24.01.2011
Autor: Roadrunner

Hallo Geddon!


Fasse im neuen Integral zusammen zu [mm] $\bruch{x^3}{4}$ [/mm] und bilde nun hiervon die Stammfunktion.


Gruß vom
Roadrunner


Bezug
        
Bezug
Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Mo 24.01.2011
Autor: Geddon

Hi, danke

und wie komm ich hier weiter?

[mm] \integral_{}^{}{sin(x) * cos(x) dx} [/mm]
u = sin(x)
v' = cos(x)

= sin(x)*sin(x) - [mm] \integral_{}^{}{cos(x) * sin(x) dx} [/mm]

zusammenfassen geht da ja schlecht?

Gruß
Geddon

Bezug
                
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Mo 24.01.2011
Autor: schachuzipus

Hallo Geddon,

> Hi, danke
>
> und wie komm ich hier weiter?
>
> [mm]\integral_{}^{}{sin(x) * cos(x) dx}[/mm]
> u = sin(x)
> v' = cos(x)
>
> = sin(x)*sin(x) - [mm]\integral_{}^{}{cos(x) * sin(x) dx}[/mm]
>
> zusammenfassen geht da ja schlecht?

Wieso nicht?

Du hast die Gleichung [mm]\int{\sin(x)\cdot{}\cos(x) \ dx} \ = \ \sin^2(x) \ - \ \int{\sin(x)\cdot{}\cos(x) \ dx}[/mm]

Stelle nach dem Integral um und löse danach auf ...

>
> Gruß
> Geddon

LG

schachuzipus


Bezug
                        
Bezug
Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:01 Mo 24.01.2011
Autor: Geddon

Hi,

meinst du
$ [mm] \int{\sin(x)\cdot{}\cos(x) \ dx} [/mm] \ = \ [mm] \sin^2(x) [/mm] \ - \ [mm] \int{\sin(x)\cdot{}\cos(x) \ dx} [/mm] $

[mm] \sin^2(x) [/mm] = [mm] \int{\sin(x)\cdot{}\cos(x) \ dx} [/mm]  + [mm] \int{\sin(x)\cdot{}\cos(x) \ dx} [/mm]
Nebenfrage: kann man das auch alles unter ein Integral schreiben?

[mm] \sin^2(x) [/mm] = 2* [mm] \int{\sin(x)\cdot{}\cos(x) \ dx} [/mm] ?

Gruß
Geddon

Bezug
                                
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Mo 24.01.2011
Autor: Steffi21

Hallo, teile die Gleichung durch 2, Steffi

Bezug
                                        
Bezug
Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Mo 24.01.2011
Autor: Geddon

$ [mm] \bruch{\sin^2(x)}{2} [/mm] $ = $ [mm] \int{\sin(x)\cdot{}\cos(x) \ dx} [/mm] $

Bezug
                                                
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Mo 24.01.2011
Autor: schachuzipus

Hallo nochmal,

> [mm]\bruch{\sin^2(x)}{2}[/mm] = [mm]\int{\sin(x)\cdot{}\cos(x) \ dx}[/mm]  [daumenhoch]

Gruß

schachuzipus


Bezug
                                                        
Bezug
Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Mo 24.01.2011
Autor: Geddon

Hi,

achso ich setzt dann ein:

$ [mm] \int{\sin(x)\cdot{}\cos(x) \ dx} [/mm] \ = \ [mm] \sin^2(x) [/mm] \ - \ [mm] \int{\sin(x)\cdot{}\cos(x) \ dx} [/mm] $ mit

$ [mm] \bruch{\sin^2(x)}{2} [/mm] $ = $ [mm] \int{\sin(x)\cdot{}\cos(x) \ dx} [/mm] $

=  [mm] \int{\sin(x)\cdot{}\cos(x) \ dx} [/mm]  =  [mm] \sin^2(x) [/mm]  - [mm] \bruch{\sin^2(x)}{2} [/mm]

= [mm] \bruch{\sin^2(x)}{2} [/mm]

So ok?

wobei als wxMaxima als Lösung  [mm] -\bruch{\cos^2(x)}{2} [/mm] zeigt

Gruß
Geddon

Bezug
                                                                
Bezug
Integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Mo 24.01.2011
Autor: fred97


> Hi,
>  
> achso ich setzt dann ein:
>  
> [mm]\int{\sin(x)\cdot{}\cos(x) \ dx} \ = \ \sin^2(x) \ - \ \int{\sin(x)\cdot{}\cos(x) \ dx}[/mm]
> mit
>
> [mm]\bruch{\sin^2(x)}{2}[/mm] = [mm]\int{\sin(x)\cdot{}\cos(x) \ dx}[/mm]
>  
> =  [mm]\int{\sin(x)\cdot{}\cos(x) \ dx}[/mm]  =  [mm]\sin^2(x)[/mm]  -
> [mm]\bruch{\sin^2(x)}{2}[/mm]
>
> = [mm]\bruch{\sin^2(x)}{2}[/mm]
>
> So ok?

Ja !

Aber eigentlich mußt Du schreiben:  [mm]\int{\sin(x)\cdot{}\cos(x) \ dx} = \bruch{\sin^2(x)}{2}+C[/mm] .

Denn eine Stammfunktion ist nur bis auf eine additive Konstante eindeutig bestimmt.

>  
> wobei als wxMaxima als Lösung  [mm]-\bruch{\cos^2(x)}{2}[/mm]
> zeigt

Das ist nicht tragisch, denn [mm] \sin^2(x)+\cos^2(x)=1 [/mm]    !!!

Also     [mm] \bruch{\sin^2(x)}{2}= -\bruch{\cos^2(x)}{2}+1/2 [/mm]

Wie gesagt: eine Stammfunktion ist nur bis auf eine additive Konstante eindeutig bestimmt.


FRED

>  
> Gruß
>  Geddon


Bezug
                                                
Bezug
Integrieren: Integrationskonstante
Status: (Antwort) fertig Status 
Datum: 15:17 Mo 24.01.2011
Autor: Roadrunner

Hallo Geddon!


Da es sich um ein unbestimmtes Integral handelt, fehlt hier nur noch eine Integrationskonstante.


Gruß vom
Roadrunner

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]