matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegrieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Integrieren
Integrieren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Mo 26.06.2006
Autor: Vieta

Aufgabe 1
  [mm] \integral{\bruch{dx}{(3-5*x)^3}} [/mm]

Also ich habe irgendwie keine Ahnung, wie ich das integrieren soll... Habe überlegt, zuerst den Nenner auszumultiplizieren, aber habe das Gefühl, dass das nicht sehr hilfreich ist.

Zu sagen ist dazu, dass die Aufgabe mit "raten" zu lösen ist und nicht mit substituieren, oder partieller Integration...

Danke schon zum Voraus!

MfG
Vieta


edit: mir ist noch gerade eine ähnliche Aufgabe nicht klar:

Aufgabe 2
  [mm] \integral{\bruch{dx}{ \wurzel[n]{(a-b*x)^m}}} [/mm]

        
Bezug
Integrieren: Umformen und Potenzregel
Status: (Antwort) fertig Status 
Datum: 20:50 Mo 26.06.2006
Autor: Loddar

Hallo Vieta!


Formal korrekt wird dieses Integral mittels Substitution $z \ := \ 3-5*x$ gelöst.

Aber vielleicht hilft Dir folgende Umformung gemäß MBPotenzgesetz:

[mm] $\bruch{1}{(3-5*x)^3} [/mm] \ = \ [mm] (3-5*x)^{-3}$ [/mm]


Gruß
Loddar


> edit: mir ist noch gerade eine ähnliche Aufgabe nicht
> klar:
>  
> [mm]\integral{\bruch{dx}{ \wurzel[n]{(a-b*x)^m}}}[/mm]  

Auch hier mittels MBPotenzgesetz umformen:

[mm] $\bruch{1}{ \wurzel[n]{(a-b*x)^m}} [/mm] \ = \ [mm] (a-b*x)^{-\bruch{m}{n}}$ [/mm]




Bezug
                
Bezug
Integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 Mo 26.06.2006
Autor: Vieta

Vielleicht habe ich meine Frage nicht ganz präzise gestellt.. Die Umformung habe ich verstanden, weiss aber nicht, wie ich das integrieren soll..

MfG
Vieta

Bezug
                        
Bezug
Integrieren: Potenzregel
Status: (Antwort) fertig Status 
Datum: 09:40 Di 27.06.2006
Autor: Loddar

Hallo Vieta!


Den Term [mm] $(3-5*x)^{-3}$ [/mm] kannst Du mit der MBPotenzregel integrieren:

[mm] $\integral{x^n \ dx} [/mm] \ = \ [mm] \bruch{1}{n+1}*x^{n+1} [/mm] + C$   für   $n \ [mm] \not= [/mm] \ -1$


Da Du das Integral dann mit Probieren herausfinden sollst, musst Du diese "Stammfunktion" wieder ableiten. Dann wirst Du feststellen, dass zur Ausgangsfunktion eine Faktor hinzugekommen ist. Diesen als Kehrwert bei der Stammfunktion hinzufügen ... fertig!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]