matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikIntegrierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Integrierbarkeit
Integrierbarkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Do 21.05.2009
Autor: Fry

Hallo zusammen,

sei g eine messbare numerische Fkt
angenommen es existiert eine  Fkt h mit [mm] |g|\le [/mm] h, wobei h [mm] \mu-integrierbar. [/mm]
Warum ist dann g dann auch [mm] \mu-integrierbar? [/mm]

Würde mich über eure Hilfe freuen.
Gruß
Fry

        
Bezug
Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Sa 23.05.2009
Autor: vivo

Hallo,

das Integral ist monoton, also für g [mm] \le [/mm] h gilt:

[mm]\integral g d \mu \le \integral h d\mu[/mm]

und jetz betrachtest du einfach den positiv und den negativteil:

[mm]\integral g d\mu = \integral g^+ d\mu - \integral g^- d\mu[/mm]

gruß

Bezug
                
Bezug
Integrierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:59 Do 28.05.2009
Autor: Fry

Vielen Dank nochmal für deine Antwort, vivo !
Das hatte ich mir auch gedacht, aber mich hat irritiert, dass bei den Voraussetzungen für diese Formel immer steht, dass f und g [mm] \mu-integrierbar [/mm] sein müssen...was ich ja eigentlich zeigen möchte.(??)

VG
Fry

Bezug
                        
Bezug
Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Do 28.05.2009
Autor: pelzig


> Vielen Dank nochmal für deine Antwort, vivo !
>  Das hatte ich mir auch gedacht, aber mich hat irritiert,
> dass bei den Voraussetzungen für diese Formel immer steht,
> dass f und g [mm]\mu-integrierbar[/mm] sein müssen...was ich ja
> eigentlich zeigen möchte.(??)

Das ist richtig, [mm] $\int_Xg\ d\mu$ [/mm] darf man erst hinschreiben, falls g integrierbar ist. Um zu zeigen, dass g integrierbar ist, musst du, da g bereits messbar ist, nur noch zeigen, dass $g_+$ und $g_-$ messbar sind (das ist sicherlich klar) und dass gilt [mm] $\int_X [/mm] g_+\ [mm] d\mu<\infty$ [/mm] und [mm] $\int_X [/mm] g_-\ [mm] d\mu<\infty$ [/mm] (das Integral messbarer, nicht-negativer Funktionen existiert immer, aber es kann auch [mm] $\infty$ [/mm] sein).
Nun gilt aber [mm] $g_+\le g_++g_-=|g|\le [/mm] h$, also [mm] $\int_X [/mm] g_+\ [mm] d\mu\le\int_X [/mm] h\ [mm] d\mu<\infty$, [/mm] denn h ist [mm] $\mu$-integrierbar, [/mm] analog für $g_-$.

Mach dir klar dass bereits [mm] $|g|\le [/mm] h$ [mm] $\mu$-fast-überall [/mm] genügt.

Gruß, Robert

Bezug
                                
Bezug
Integrierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:37 So 31.05.2009
Autor: Fry

Danke schön ! = )

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]